454
I. V. Smirnov et al.
350
2. R. E. Notari, J. Pharm. Sci., 56(7), 804 – 809 (1967).
3. R. E. Notari, L. C. Marylin, and A. Cardoni, Tetrahedron Lett,
40, 3499 – 3502 (1969).
4. R. E. Notari, L. C. Marylin, and A. Cardoni, J. Pharm. Sci.,
59(1), 28 – 32 (1970).
5. H. Lonnberg, P. Suokas, R. Kappi, et al., Acta Chem. Scand.,
B40, 798 – 805 (1986).
6. R. Shapiro and R. S. Klein, Biochemistry, 5, 2358 (1966).
7. E. R. Garret and J. Tsau, J. Pharm. Sci., 61, 1052 (1972).
8. R. E. Notari, M. L. Chin, and R. J. Wittebor, J. Pharm. Sci., 57,
1189 (1972).
Loss of I (by ammonia)
300
250
200
150
100
50
Loss of I (by HPLC)
Loss of I (by spectrophotometry)
Formation of II (by HPLC)
Formation of II (by spectrophotometry
9. B. Paw and G. Misztal, Acta Pol. Pharm., 52(6), 455 – 457
(1995).
10. T. Sato, M. Morozumi, K. Kodama, et al., Cancer Treat. Rep.,
68(11), 1357 – 1366 (1984).
11. T. Okabayashi and J. G. Moffatt, Methods Enzymol., 84,
470 – 483 (1982).
0
5
10
15
20
25
30
35
12. T. Okabayashi, S. Mihara, D. B. Repke, and J. G. Moffatt, Can-
cer Res., 37(9), 3132 – 3135 (1977).
13. T. Okabayashi, S. Mihara, and J. G. Moffatt, Cancer Res.,
37(2), 625 – 628 (1977).
14. Y. Makino, Y. Matsubara, K. M. Watanabe, and M. Hirobe,
Yakugaku Zasshi, 102(1), 49 – 55 (1982).
% of initial I
Fig. 5. Plots of the variation coefficient (n = 4) for cytarabine
hydrolytic deamination kinetics versus the amounts of substances
determined by various methods.
15. J. Boutagy and D. J. Harvey, J. Chromatogr., 156(1), 153 – 166
(1978).
16. W. Sadee, C. Finn, and J. Staroscik, Adv. Mass Spectrom.
Biochem. Med., 1, 509 – 515 (1976).
17. R. L. Furner, R. W. Gaston, J. D. Strobel, et al., J. Nat. Cancer
Inst., 52(5), 1521 – 1528 (1974).
18. W. Kreis, C. Gordon, C. Gizoni, et al., Cancer Treat. Rep.,
61(4), 643 – 646 (1977).
19. B. C. Pal, J. Chromatogr., 148, 545 – 548 (1978).
20. A. A. Miller, J. A. Benvenuto, and T. L. Loo, J. Chromatogr.,
228, 165 (1982).
21. L. D. Kisinger and N. L. Stemm, J. Chromatogr., 353,
309 – 318 (1986).
22. E. B. Rochard, D. M. C. Barthes, and P. Y. Courtois,
Am. J. Hosp. Pharm., 49, 619 – 623 (1992).
23. M. G. Pallavicini and J. A. Mazrimas, J. Chromatogr., 183(4),
449 – 458 (1980).
24. H. Breithaupt and J. Schick, J. Chromatogr., 225(1), 99 – 106
(1981).
25. P. Lenssen, A. Drenthe-Schonk, H. Wessels, et al., J.
Chromatogr., 223(2), 371 – 378 (1981).
26. M. Tuncel, R. E. Notari, and L. Malspeis, J. Liq. Chromatogr.,
4(5), 887 – 896 (1981).
27. J. A. Sinkule and W. E. Evans, J. Chromatogr., 274, 87 – 93
(1983).
28. G. G. Liversidge, T. Nishihata, T. Higuchi, et al., J.
Chromatogr., 276(2), 375 – 383 (1983).
29. R. L. Schilsky and F. S. Ordway, J. Chromatogr., 337(1),
63 – 71 (1985).
30. A. Riccardi, T. Servidei, A. Lasorella, et al., J. Chromatogr.,
497, 302 – 307 (1989).
31. J. R. Wermeling, J. M. Pruemer, F. M. Hassan, et al., Clin.
Chem., 35(6), 1011 – 1015 (1989).
pound I. According to the published data [2, 4, 5], we may
suggest that compound II exhibits subsequent conversion
with the formation of optically inactive products. This is con-
firmed by the fact that the increment of II exhibits a tendency
to slow down, whereas the cytarabine deamination proceeds
linearly (or even slightly increases). For this reason, we may
conclude that variation of the content of compound II does
not adequately reflect the kinetics of the hydrolytic
deamination of cytarabine.
The spectrophotometric determination of II in a mixture
with I by the method described above also gives results that
are rather inconsistent with the HPLC data.
However, the increment of ammonia – another product
of hydrolytic deamination – is well correlated with the de-
gree of cytarabine deamination. Determination of the
hydrolytic deamination kinetics by measuring the ammonia
increment is sufficiently precise (the variation coefficient not
exceeding 7% in the entire range of concentrations), while
being faster and simpler as compared to the HPLC proce-
dure. However, it must be noted that study of cytarabine
hydrolytic deamination kinetics by the “ammonia” technique
leads to a somewhat (up to 30%) overstated estimate of the
reaction rate. Additional ammonia production is probably
also related to the conversion of compound II.
Thus, the proposed methods of evaluation of cytarabine
stability in aqueous solutions, based on HPLC determination
of compounds I and II and the colorimetric analysis of am-
monia, can be used for drug stability monitoring in develop-
ment of liquid medicinal forms of cytarabine.
32. S. V. Galushko and I. P. Shishkina, Khim.-Farm. Zh., 24(1),
85 – 86 (1990).
33. S. V. Galushko and I. P. Shishkina, J. Pharm. Biomed. Anal.,
10(10 – 12), 1093 – 1095 (1992).
34. M. Burk, M. Volmer, K. Fartash, et al., Arzneim.-Forsch., 45(5),
616 – 619 (1995).
35. J. Braess, J. Pfoertner, C. C. Kaufmann, et al., J. Chromatogr.,
B: Biomed. Appl., 676(1), 131 – 140 (1996).
36. L. A. Osterman, The Chromatography of Proteins and Nucleic
Acids [in Russian], Nauka, Moscow (1985), p. 203.
37. O. V. Travina, A Guide for Biochemical Investigations [in Rus-
sian], Medgiz, Moscow (1955), pp. 126 – 129.
REFERENCES
1. Medicinal Preparations of the Upjohn Company, A Handbook,
Upjohn Company Moscow Office, Moscow (1993).