November 2001
1337
mechanisms of apoptosis by cell type and physiological state.
A correlation between the structural and biochemical differ-
ences of 2 and 4 may serve as a model system for under-
standing apoptosis.
In conclusion, the present study demonstrated that a-tri-
fluoromethyl diketone (2) and 1,1,1-trifluoro-3-phenyl-2-
propanone (11) are neuroprotective in an in vitro model of
Kϩ deprivation-induced apoptosis of CGNs and may be at-
tractive lead compounds for further development as a neu-
rorescuing agent. The extensive structure-relationship in this
type of compound, including the inhibition mechanism of
apoptosis, will be reported in due course.
Fig. 2. Effects of Compounds 2 and 11 on Low Kϩ (LK)-Induced DNA
Fragmentation in Cultured Cerebellar Granule Cells
REFERENCES
1) Thompson C. B., Science, 267, 1456 (1995).
Lane 1, unexposed to LK medium; Lane 2, exposed to LK for 24 h; Lane 3 and 4, ex-
posed to LK and treated with compounds 2 (30 mM) and 11 (30 mM), respectively.
2) Pettmann B., Henderson C. E., Neuron, 20, 633—647 (1998).
3) Jacobson M. D., Current Biology, 8, R418—R421 (1998).
4) Davidson F. F., Steller H., Nature (London), 391, 587—591 (1998).
5) Walter M. W., Adlington R. M., Baldwin J. E., Schofield C. J., J. Org.
Chem., 63, 5179—5192 (1998).
6) Abouabdellah A., Begue J.-P., Bonnet-Delpon D., Kornilov A., Ro-
drigues I., Richard C., J. Org. Chem., 63, 6529—6534 (1998).
7) Boger D. L., Sato H., Lerner A. E., Austin B. J., Patterson J. E., Patri-
celli M. P., Cravatt B. F., Bioorg. Med. Chem. Lett., 9, 265—270
(1999).
lular Kϩ concentration in CGNs.
In agreement with previous reports,24) both Act-D
(0.5 mg/ml) and CHX (5 mg/ml) rescued most CGNs from
death caused by low Kϩ. As Act-D and CHX are thought to
act at the upstream of several apoptotic cascades, they may
exhibit powerful neuroprotective effects. Since 2 and 11
showed potent neuroprotection, it is interesting to know
where TFMKs effect this potency.
8) Begue J. P., Bonnet-Delpon D., Tetrahedron, 47, 3207—3258 (1991).
9) Kawase M., Miyamae H., Kurihara T., Chem. Pharm. Bull., 46, 749—
756 (1998).
Caspases, a family of cystein proteases, play a critical role
in execution of apoptosis and are responsible for many of the
biological and morphological changes associated with apop-
tosis.28,29) Recent report suggested that caspase-3 activity is
up-regulated and specific caspase-3 inhibitors moderately
suppressed cell death during low Kϩ-induced apoptosis in
CGNs.27) Thus, the caspase inhibitors, carboxybenzoxy-L-as-
10) Kawase M., Saito S., Kurihara T., Chem. Pharm. Bull., 48, 1338—
1343 (2000).
11) Kawase M., Hirabayashi M., Kumakura H., Saito S., Yamamoto K.,
Chem. Pharm. Bull., 48, 114—119 (2000).
12) Kawase M., Yuki Gosei Kagaku Kyokai Shi, 59, 755—766 (2001).
13) Kawase M., Harada H., Saito S., Cui J., Tani S., Bioorg. Med. Chem.
Lett., 9, 193—194 (1999).
14) Kawase M., Sakagami H., Kusama K., Motohashi N., Saito S., Bioorg.
Med. Chem. Lett., 9, 3113—3118 (1999).
15) Levi G., Aloisi F., Ciotti M. T., Thangnipon W., Kingsbury A., Balazs
R., “A Dissection and Tissue Culture Manual of the Nervous System,”
ed. by Shahar A., de Vellis J., Vernadakis A., Haber B., Alan R. Liss,
New York, 1989, pp. 211—214.
16) Hockenbery D., Nunez G., Milliman C., Schreiber R. D., Korsmeyer S.
J., Nature (London), 348, 334—336 (1990).
17) Boyum A., Scand. J. Clin. Lab. Invest., 97, 77—89 (1968).
18) Niwa M., Al-Essa L. Y., Kohno K., Kanamori Y., Matsuno M., Abe
A., Uematsu T., J. Immunol., 157, 4147—4153 (1996).
19) Nicholson D. W., Ali A., Thornberry N. A., Vaillancourt J. P., Ding C.
K., Gallant M., Gareau Y., Griffin P. R., Labelle M., Lazebnik Y. A.,
Munday N. A., Raju S. M., Smulson M. E., Yamin T.-T., Yu V. L.,
Miller D. K., Nature (London), 376, 37—43 (1995).
partyl-L-glutamyl-L-valyl-L-aspart-1-ylfluoromethane
(Z-
DEVD-FMK, caspase-3 inhibitor) and carboxybenzoxy-L-
valyl-L-alanyl-L-b-methyl-aspart-1-ylfluoromethane (Z-VAD-
FMK, non-selective caspase inhibitor) used at 200 mM, di-
minished death by 50—60%, whereas 200 mM acetyl-Tyr-Val-
Ala-Asp-aldehyde (Ac-YVAD-CHO, caspase-1 inhibitor)
was not protective in our assay systems, as previously
shown.27) These inhibitors are the peptides including the
amino acid sequence with an enzymatic cleavage site. There-
fore, it is useful if the simple compounds (2 and 11) have in-
hibitory activity on caspases. On the other hand, the chy-
motrypsin inhibitor N-tosyl-L-phenylalanyl chloromethylke-
tone (TPCK) had no effect on Kϩ-deprivation-induced apop-
20) Niwa M., Hara A., Kanamori Y., Matsuno H., Kozawa O., Yoshimi N.,
Mori H., Uematsu T., Eur. J. Pharmacol., 371, 59—67 (1999).
tosis at concentrations tolerated by CGNs (Table 1).24) There- 21) D’Mello S. R., Galli C., Ciotti T., Calissano P., Proc. Natl. Acad. Sci.
fore, the apoptosis-inhibitory activity of TFMKs was sus-
pected to be related to the inhibition of caspase-3. We exam-
U.S.A., 90, 10989—10993 (1993).
22) Miller J. M., Johnson E. M., Jr., J. Neurosci., 16, 7487—7495 (1996).
23) Levi G., Aloisi F., Ciotli M. T., Gallo V., Brain Res., 290, 77—86
ined the inhibitory activity of TFMKs against caspase-3 acti-
(1984).
vated fraction from neutrophils.20) However, the neuroprotec-
24) Schulz T. B., Weller M., Klockgether T., J. Neurosci., 16, 4696—4706
(1996).
tive activity of TFMKs was unrelated to the caspase-3 activ-
25) Galli C., Meucci O., Scorziello A., Werge T. M., Calissano P., Schettini
G., J. Neurosci., 15, 1172—1179 (1995).
26) Bisaglia M., Natalini B., Pellicciari R., Straface E., Malorni W., Monti
ity.
Previous studies from our laboratories have shown that a-
trifluoromethyl acyloins (4, 12) can induce apoptosis of
human cancer cells in vitro, whose induction was mediated
by activation of the caspase pathway.14) Two structurally re-
lated PhCOCOCF3 (2) and PhCOCH(OH)CF3 (4) differ in
their apoptosis-modulating activity. These distinct inhibitory
modes of action by 2 and 4 are interesting. It could be sug-
gested the existence of several pathways and/or regulation
D., Franceschi C., Schettini G., J. Neurochem., 74, 1197—1204
(2000).
27) Moran J., Itoh T., Reddy U. R., Chen M., Alnemri E. S., Pleasure D., J.
Neurochem., 73, 568—577 (1999).
28) D’Mello S. R., Kuan C-Y., Flavell R. A., Rakic P., J. Neurosci. Res.,
59, 24—31 (2000).
29) Budihardjo I., Oliver H., Lutter M., Luo X., Wang X., Annun. Rev.
Cell. Dev. Biol., 15, 269—290 (1999).