10.1002/cctc.202100682
ChemCatChem
COMMUNICATION
[9]
a) M. Tamura, H. Wakasugi, K.-i. Shimizu, A. Satsuma, Chem. Eur. J.
2011, 17, 11428-11431; b) M. Tamura, T. Tonomura, K.-i. Shimizu, A.
Satsuma, Green Chem. 2012, 14, 717-724; c) M. Tamura, T. Tonomura,
K.-i. Shimizu, A. Satsuma, Green Chem. 2012, 14, 984-991. d) M. Honda,
M. Tamura, Y. Nakagawa, S. Sonehara, K. Suzuki, K.-i. Fujimoto, K.
Tomishige, ChemSusChem 2013, 6, 1341-1344; e) M. Tamura, S. M. A.
H. Siddiki, K.-i. Shimizu, Green Chem. 2013, 15, 1641-1646; f) M.
Tamura, A. Satsuma, K.-i. Shimizu, Catal. Sci. Technol. 2013, 3, 1386-
1393; g) M. Tamura, K. Sawabe, K. Tomishige, A. Satsuma, K.-i. Shimizu,
ACS Catal. 2015, 5, 20–26. h) Y. Wang, F. Wang, Q. Song, Q. Xin, S.
Xu, J. Xu, J. Am. Chem. Soc. 2013, 135, 1506–1515; i) Y. Wang, F.
Wang, C. Zhang, J. Zhang, M. Li, J. Xu, Chem. Commun. 2014, 50, 2438-
2441; j) D. Stoian, F. Medina, A. Urakawa, ACS Catal. 2018, 8, 3181–
3193; k) M. Tamura, K. Ito, M. Honda, Y. Nakagawa, H. Sugimoto, K.
Tomishige, Sci. Rep. 2016, 6, 24038; l) M. Honda, M. Tamura, Y.
Nakagawa, K. Nakao, K. Suzuki, K. Tomishige, J. Catal. 2014, 318, 95-
107; m) M. Tamura, M. Honda, K. Noro, Y. Nakagawa, K. Tomishige, J.
Catal. 2013, 305, 191-203; n) M. Tamura, K. Noro, M. Honda, Y.
Nakagawa, K. Tomishige, Green Chem. 2013, 15, 1567-1577.
details of the reaction mechanism and catalysis are under
investigation.
In conclusion, we found that MoOx-modified CeO2 (MoOx-CeO2)
with 1 wt% Mo was an effective and reusable heterogeneous
catalyst for Michael addition reaction, and the high yield (99%) of
the target product was obtained. Based on the catalyst
characterization results such as XRD, XPS, TEM and Raman,
isolated Mo6+ species were formed on CeO2 in MoOx-CeO2(Mo: 1
wt%) catalyst, and considering the experimental results, the
active site of the catalyst is the interface between the isolated
Mo6+ species and CeO2. The activity based on the active site is
74-fold and 1800-fold higher than that of CeO2 surface and a
typical strong organic base of DBU.
Acknowledgements
[10] a) S. Lippert, W. Baumann, K. Thomke, J. Mol. Catal. 1991, 69, 199-214;
b) A. K. P. Mann, Z. Wu, F. C. Calaza, S. H. Overbury, ACS Catal. 2014,
4, 2437-2448; c) G. Liang, A. Wang, X. Zhao, N. Lei, T. Zhang, Green
Chem. 2016, 18, 3430-3438; d) S. Banerjee, New J. Chem. 2015, 39,
5350-5353; e) Z. Liang, D. Jiang, G. Fang, W. Leng, P. Tu, Y. Tong, L.
Liu, J. Ni, X. Li, ChemistrySelect 2019, 4, 4364-4370; f) W. An, Phys.
Chem. Chem. Phys. 2015, 17, 22529-22532; g) C. Zhao, C. Watt, P. R.
Kent, S. H. Overbury, D. R. Mullins, F. C. Calaza, A. Savara, Y. Xu, J.
Phys. Chem. C 2019, 123, 8273-8286; h) G. Li, B. Wang, D. E. Resasco,
J. Catal. 2020, 391, 163-174; (i) G. Li, S. Dissanayake, S. L. Suib, D. E.
Resasco, Appl. Catal. B 2020, 267, 118373.
This work was supported by JSPS KAKENHI Grant Number
JP20H04799.
Keywords: Heterogeneous catalyst • Molybdenum oxide •
Cerium oxide • Michael addition
[1]
[2]
a) M. Kanai, N. Kato, E. Ichikawa, M. Shibasaki, Synlett 2005, 1491-
1508; b) R. S. Malkar, A. L. Jadhav, G. D. Yadav, Mol. Catal. 2020, 485,
110814.
[11] H. Hu, I. E. Wachs, S. R. Bare, J. Phys. Chem. 1995, 99, 10897-10910.
[12] S. Tshepelevitsh, A. Kütt, M. Lõkov, I. Kaljurand, J. Saame, A. Heering,
P. G. Plieger, R. Vianello, I. Leito, Eur. J. Org. Chem. 2019, 6735-6748.
[13] a) R. Ballini, A. Rinaldi, Tetrahedron Lett. 1994, 35, 9247-9250; (b) S.
Muthusamy, S. A. Babu, C. Gunanathan, Synth. Commun. 2002, 32,
3247-3254.
a) H. Hattori, Chem. Rev. 1995, 95, 537-558; b) H. Hattori, Appl. Catal.
A 2015, 504, 103-109; c) E. Iglesia, D. G. Barton, J. A. Biscardi, M. J. L.
Gines, S. L. Soled, Catal. Today 1997, 38, 339-360; d) M. B. Gawande,
R. K. Pandey, R. V. Jayaram, Catal. Sci. Technol. 2012, 2, 1113-1125;
e) J. T. Kozlowski, R. J. Davis, ACS Catal. 2013, 3, 1588-1600; f) J. C.
Védrine, Res. Chem. Intermed. 2015, 41, 9387-9423.
[3]
[4]
a) S. Shylesh, W. R. Thiel, ChemCatChem 2011, 3, 278-287; b) K.
Motokura, Bull. Chem. Soc. Jpn. 2017, 90, 137-147.
a) J. H. Clark, Chem. Rev. 1980, 80, 429-452; b) B. M. Choudary, M. L.
Kantam, B. Kavita, C. V. Reddy, F. Figueras, Tetrahedron 2000, 56,
9357-9364; c) B. Veldurthy, J. M. Clacens, F. Figueras, Adv. Synth. Catal.
2005, 347, 767-771; d) C. Xu, J. K. Bartley, D. I. Enache, D. W. Knight,
G. J. Hutchings, Synthesis 2005, 3468-3476; e) B. M. Choudary, M. L.
Kantam, B. Kavita, C. V. Reddy, K. K. Rao, F. Figueras, Tetrahedron,
1998, 39, 3555-3558.
[5]
a) S. Abelló, F. Medina, D. Tichit, J. Pérez-Ramírez, J. C. Groen, J. E.
Sueiras, P. Salagre, Y. Cesteros, Chem. Eur. J. 2005, 11, 728-739; b) X.
Lei, F. Zhang, L. Yang, X. Guo, Y. Tian, S. Fu, F. Li, D. G. Evans, X.
Duan, AIChE J. 2007, 53, 932-940; c) J. Zhang, K. Wang, M. W. Nolte,
Y. S. Choi, R. C. Brown, B. H. Shanks, ACS Catal. 2016, 6, 2608-2621.
[6] a) M. J. Climent, A. Corma, V. Fornés, R. Guil-Lopez, S. Iborra, Adv. Synth.
Catal. 2002, 344, 1090-1096; b) S. Kanai, I. Nagahara, Y. Kita, K.
Kamata, M. Hara, Chem. Sci., 2017, 8, 3146-3153.
[7] a) C. Angelici, M. E. Z. Velthoen, B. M. Weckhuysen, P. C. A. Bruijnincx,
Catal. Sci. Technol. 2015, 5, 2869-2879; b) J. Sun, R. A. L. Baylon, C.
Liu, D. Mei, K. J. Martin, P. Venkitasubramanian, Y. Wang, J. Am. Chem.
Soc. 2016, 138, 507-517; c) J. Wan, L. Fu, H. Yang, K. Wang, F. Xi, L.
Pan, Y. Li, Y. Liu, Ind. Eng. Chem. Res. 2020, 59, 19918-19928; d) A.
Gangadharan, M. Shen, T. Sooknoi, D. E. Resasco, R. G. Mallinson,
Appl. Catal. A 2010, 385, 80-91.
[8] a) L. Vivier, D. Duprez, ChemSusChem 2010, 3, 654-678; b) M. Tamura,
K.-I. Shimizu, A. Satsuma, Chem. Lett. 2012, 41, 1397-1405; c) M.
Honda, M. Tamura, Y. Nakagawa, K. Tomishige, Catal. Sci. Technol.
2014, 4, 2830-2845; d) K. Wu, L.-D. Sun, C.-H. Yan, Adv. Energy Mater.
2016, 6, 1600501; e) T. Montini, M. Melchionna, M. Monai, P. Fornasiero,
Chem. Rev. 2016, 116, 5987-6041. f) M. Tamura, K. Tomishige, Angew.
Chem. Int. Ed. 2015, 54, 864-867; Angew. Chem. 2015, 127, 878-881;
g) M. Tamura, Y. Li, K. Tomishige, Chem. Commun. 2020, 56, 7337-
7340.
4
This article is protected by copyright. All rights reserved.