Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
Communication
ChemComm
3 (a) Microalbuminuria, a marker for organ damage, ed. C. E. Mogensen,
Science Press, London, 1993; (b) J. S. Yudkin, R. D. Forrest and
C. A. Jackson, Lancet, 1988, 332, 530.
fluorescence enhancement of 400-fold in the presence of HSA
with a detection limit of around 6 nM. AL-1 displayed high
binding affinity with HSA and was found to bind specifically to
the domain IIA of HSA by displacement assay. The probe was
used in the quantitative detection of albumin level in urine
samples from several healthy donors and the results were
validated by immunoassay. As compared to the immunoassay,
quantifying urinary albumin with AL-1 is advantageous due to
the low-cost, rapid detection time and a facile operation
procedure, which can be completed within 30 minutes. Further-
more, AL-1 is stable for long-term storage as no degradation
was observed for AL-1 in the DMSO stock solution for at least
6 months (Fig. S9, ESI†). Finally as AL-1 is simple in structure,
very easy to synthesize and stable for long-term storage, we
believe that this fluorescent albumin probe presents a low-cost
alternative to immunoassay for the practical application in the
analysis of low level urinary albumin.
4 K. M. Ward, Anal. Chem., 1995, 67, 383.
5 D. J. Rowe, A. Dawnay and G. F. Watts, Ann. Clin. Biochem., 1990, 27, 297.
6 (a) P. F. Ruhn, J. D. Taylor and D. S. Hage, Anal. Chem., 1994,
66, 4265; (b) A. Silver, A. Dawnay, J. Landon and W. R. Cattell, Clin.
Chem., 1986, 32, 1303; (c) Q.-P. Qin, O. Peltola and K. Pettersson,
Clin. Chem., 2003, 49, 1105.
7 (a) F. L. Rodkey, Clin. Chem., 1965, 11, 478; (b) B. T. Doumas and
T. Peters Jr., Clin. Chem., 2009, 55, 583.
8 (a) G. Sudlow, D. J. Birkett and D. N. Wade, Mol. Pharmacol., 1975,
11, 824; (b) J. Min, J. W. Lee, Y. H. Ahn and Y.-T. Chang, J. Comb.
Chem., 2007, 9, 1079; (c) J. C. Er, M. K. Tang, C. G. Chia, H. Liew,
M. Vendrell and Y.-T. Chang, Chem. Sci., 2013, 4, 2168; (d) Y. Hong,
C. Feng, Y. Yu, J. Liu, J. W. Lam, K. Q. Luo and B. Z. Tang, Anal.
Chem., 2010, 82, 7035; (e) M. A. Kessler, A. Meinitzer, W. Petek and
O. S. Wolfbeis, Clin. Chem., 1997, 43, 996.
9 (a) M. A. Haidekker, A. G. Tsai, T. Brady, H. Y. Stevens, J. A. Frangos,
E. Theodorakis and M. Intaglietta, Am. J. Physiol.: Heart Circ.
Physiol., 2002, 282, H1609; (b) W. J. Akers, J. M. Cupps and
M. A. Haidekker, Biorheology, 2005, 42, 335.
´
10 (a) M. L. Viriot, M. C. Carre, C. Geoffroy-Chapotot, A. Brembilla,
We are grateful to the Ministry of Science and Technology
(Grant No. 102B2011I5) and the Ministry of Education (Grant
No. 102N2011E1), Taiwan (ROC) for financial support.
S. Muller and J. F. Stoltz, Clin. Hemorheol. Microcirc., 1998, 19, 151;
(b) M. A. Haidekker, T. Ling, M. Anglo, H. Y. Stevens, J. A. Frangos
and E. A. Theodorakis, Chem. Biol., 2001, 8, 123.
11 W. L. Goh, M. Y. Lee, T. L. Joseph, S. T. Quah, C. J. Brown, C. Verma,
S. Brenner, F. J. Ghadessy and Y. N. Teo, J. Am. Chem. Soc., 2014,
136, 6159.
12 Y.-H. Ahn, J.-S. Lee and Y.-T. Chang, J. Comb. Chem., 2008, 10, 376.
13 (a) I. Petitpas, A. A. Bhattacharya, S. Twine, M. East and S. Curry,
J. Biol. Chem., 2001, 276, 22804; (b) S. Curry, H. Mandelkow, P. Brick
and N. Franks, Nat. Struct. Biol., 1998, 5, 827.
Notes and references
1 T. Peters, All About Albumin: Biochemistry, Genetics, and Medical Applica-
tion, Academic Press, San Diego, CA, 1996, pp. 234–240.
2 (a) E. R. Mathiesen, T. Deckert, K. Johansen, B. Oxenboll and 14 (a) X. M. He and D. C. Carter, Nature, 1992, 358, 209; (b) A. J. Ryan,
P. A. Svendsen, Diabetologia, 1984, 26, 406; (b) G. C. Viberti,
R. J. Jarrett, U. Mahmud, R. D. Hill, A. Argyropoulos and H. Keen,
J. Ghuman, P. A. Zunszain, C.-W. Chung and S. Curry, J. Struct. Biol.,
2001, 174, 84.
Lancet, 1982, 319, 1430; (c) C. E. Mogensen and C. K. Christensen, 15 T. Iwaki, C. Torigoe, M. Noji and M. Nakanishi, Biochemistry, 1993,
N. Engl. J. Med., 1984, 311, 89.
32, 7589.
11510 | Chem. Commun., 2014, 50, 11507--11510
This journal is ©The Royal Society of Chemistry 2014