NJC
Paper
with the previous ones (pH dependent effect of sulphite–probe
interaction and selectivity studies) confirming an increased sensi-
tivity of the probes to sulphite compared to the bisulphite anion.
3 N. Sang, Y. Yun, H. Li, L. Hou, M. Han and G. Li, Toxicol. Sci,
2010, 114, 226–236.
4 P.-J. Gauthier, O. Sigmarsson, M. Gouhier, B. Haddadi and
S. Moune, J. Geophys. Res.: Solid Earth, 2016, 121, 1610–1630.
5
6
7
E. Renc u¨ zo ˘g ullari, H. B. ˙I la, A. Kayraldiz and M. Topaktas-,
Mutat. Res., 2001, 490, 107–112.
S. H. Mudd, F. Irreverre and L. Laster, Science, 1967, 156,
4
. Conclusions
In summary, we have demonstrated two OFF–ON ratiometric
pyrazoline-based sensors which are able to detect sulphite
anions. The compounds exhibit weak charge transfer fluores-
cence which is blocked after the sulphite attachment to the
a,b-unsaturated ketone part. As a result, a blue-shift of the
absorption and emission spectra of the probes was observed,
corresponding to an obvious colour change from orange to
colourless which can be noticed by the naked eye. The detection
limit of the studied indicators is comparable to that of a
recently published pyrene based sensor, while the response
speed is twice as fast at a smaller concentration of sulphite.
These two parameters can be easily tuned by the introduction
of a better acceptor (end group). Here, a simple replacement of
phenyl to thiophene improved the response time by 1.2 times
and the LOD by 1.5 times. We believe that further increase
of the electron acceptor abilities of the end group will lead to
higher polarization of the double bond system and faster
optical response. Finally, our studies revealed that only 4b
can detect sulphite anions with a good selectivity and sensitivity
in environmental samples.
1599–1602.
W.-H. Tan, F. S. Eichler, S. Hoda, M. S. Lee, H. Baris,
C. A. Hanley, P. E. Grant, K. S. Krishnamoorthy and V. E.
Shih, Pediatrics, 2005, 116, 757–766.
8
9
C. Wang, S. Feng, L. Wu, S. Yan, C. Zhong, P. Guo,
R. Huang, X. Weng and X. Zhou, Sens. Actuators, B, 2014,
1
90, 792–799.
X. Cheng, H. Jia, J. Feng, J. Qin and Z. Li, J. Mater. Chem. B,
013, 1, 4110–4114.
2
1
1
1
1
1
0 K. Rurack, A. Danel, K. Rotkiewicz, D. Grabka, M. Spieles
and W. Rettig, Org. Lett., 2002, 4, 4647–4650.
1 M. Mac, T. Uchacz, A. Danel and H. Musiolik, J. Fluoresc.,
2013, 23, 1207–1215.
2 M. Mac, T. Uchacz, T. Wr o´ bel, A. Danel and E. Kulig,
J. Fluoresc., 2010, 20, 525–532.
3 M. Mac, T. Uchacz, A. Danel, K. Danel, P. Kolek and E. Kulig,
J. Fluoresc., 2011, 21, 375–383.
4 P. Wang, N. Onozawa-Komatsuzaki, Y. Himeda, H. Sugihara,
H. Arakawa and K. Kasuga, Tetrahedron Lett., 2001, 42, 9199–9201.
5 H.-B. Shi, S.-J. Ji and B. Bian, Dyes Pigm., 2007, 73, 394–396.
6 X. Dai, T. Zhang, Y.-Z. Liu, T. Yan, Y. Li, J.-Y. Miao and B.-X.
Zhao, Sens. Actuators, B, 2015, 207, 872–877.
1
1
Conflicts of interest
1
1
1
2
2
2
2
2
7 X. Dai, T. Zhang, J.-Y. Miao and B.-X. Zhao, Sens. Actuators,
B, 2016, 223, 274–279.
8 T. Haiyu, Q. Junhong, S. Qian, B. Hongyan and Z. Weibing,
Anal. Chim. Acta, 2013, 788, 165–170.
There are no conflicts to declare.
Acknowledgements
9 Y.-Q. Sun, P. Wang, J. Liu, J. Zhang and W. Guo, Analyst,
2
012, 137, 3430–3433.
0 G. Xu, H. Wu, X. Liu, R. Feng and Z. Liu, Dyes Pigm., 2015,
20, 322–327.
1 J. Shen and R. D. Snook, Chem. Phys. Lett., 1989, 155,
83–586.
2 J.-T. Li, X.-H. Zhang and Z.-P. Lin, Beilstein J. Org. Chem.,
007, 3, art. No13.
3 L. A. Kutulya, A. E. Shevchenko and Y. N. Surov, Chem.
Heterocycl. Compd., 1975, 11, 215–217.
4 K. Drauz, A. Kleeman and E. Wolfheuss, US Pat., 4.716.237,
This work was performed with equipment purchased thanks to
the financial support of the European Regional Development
Fund in the framework of the Polish Innovation Economy
Operational Program (contract no. POIG.02.01.00-12-023/08).
Quantum chemical calculations were carried out in the Academic
Computer Center ‘‘Cyfronet’’ in Krak o´ w, Poland. This research was
supported in part by PL-Grid Infrastructure. Chemicals for the
purpose of the research were financed by the Ministry of
Science and Higher Education of the Republic of Poland
1
5
2
(DS 3711/ICh/2017). The authors would also like to acknowl-
1987.
edge financial support of TEAM programme (grant number:
TEAM/2016-1/9) of the Foundation for Polish Science co-financed
by the European Union under the European Regional Develop-
ment Fund.
2
2
5 W. Kohn and L. J. Sham, Phys. Rev., 1965, 140, A1133–A1138.
6 R. G. Parr and W. Yang, Density-Functional Theory of
Atoms and Molecules, Oxford University Press, Oxford, 1988
(and references therein).
2
7 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng,
J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda,
J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta,
References
1
C. Ribbe, Napoleon’s Crimes: A Blueprint for Hitler, Oneworld
Publications, 2008.
2
Y.-C. Hong, J.-T. Lee, H. Kim, E.-H. Ha, J. Schwartz and D. C.
Christiani, Environ. Health Perspect., 2002, 110, 187–191.
8
82 | New J. Chem., 2019, 43, 874--883
This journal is ©The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2019