C O M M U N I C A T I O N S
Scheme 2 a
In conclusion, we have developed a highly atropisomer-selective
preparation of configurationally stable (aR,7R; aS,7S) allocolchi-
cinoids 5 using a central-to-axial chirality transfer benzannulation
strategy. We have demonstrated that (aR,7S; aS,7R) allocolchici-
noids 9 can also be accessible in a stereoselective manner by using
a benzannulation reaction-thermal epimerizaton protocol. Ad-
ditional synthetic and mechanistic studies of these reactions are
underway.
a Key: (a) AgBF4, CaCO3, R1OH, 65-80 °C, 24-36 h.
Table 2. Atropisomer-Selective Benzannulation of Carbene
Complexes 8 with 1-Pentynea
Acknowledgment. This work was supported by a grant from
the National Institutes of Health (NIH GM 33589). A.V. is grateful
to the Swiss National Science Foundation for the financial support
of the collaborative project. We thank Dr. A. Linden and the
University of Zu¨rich Crystallographic Center for determining the
structure of 9a,I. This work was carried out at both Michigan State
University and the University of Zu¨rich.
c
yieldb
7 f 8 (%)
yield 9
1
entry
8
R
R
I + II (%)
drd (I:II)
1
2
3
4
5
6
7
8a
8b
8c
8d7
8e
8f
Me
Me
Me
Me
Et
Me
Et
66
55
42
54
52
47e
29e
53
45
51
48
45
45
48
3.0:1
2.4:1
2.4:1
2.0:1
2.1:1
2.1:1
3.4:1
Supporting Information Available: Full experimental details and
characterization data for compounds 2-5 and 7-9 (PDF). This material
i-Pr
t-Bu
Me
Me
t-Bu
i-Pr
i-Pr
References
8g
(1) (a) Nicolaou, K. C.; Natarajan, S.; Li, H.; Jain, N. F.; Hughes, R.; Solomon,
M. E.; Ramanjulu, J. M.; Boddy, C. N. C.; Takayanagi, M. Angew. Chem.,
Int. Ed. Engl. 1998, 37, 2708. (b) Bringmann, G.; Breuning, M.; Tasler,
S. Synthesis 1999, 525. (c) Tomioka, K.; Ishiguro, T.; Iitaka, Y.; Koga,
K. Tetrahedron 1984, 40, 1303.
a All reactions were run in benzene at 55-58 °C for 24 h with 0.33
equiv of 8 in 1 M 1-pentyne. b Isolated as a mixture with 5-10% of OR1-
chelated tetracarbonyl complex. c Isolated yield. d Determined by 1H NMR
integration from the crude product mixture and then confirmed after
chromatographic separation of diastereomers. e Yield over two steps from
7.
(2) Pu, L. Chem. ReV. 1998, 98, 2405.
(3) For example: (a) Jacques, J.; Fouquey, C. Organic Synthses; Wiley: New
York, 1993; Collect. Vol. 8, p 50. (b) Takaya, H.; Akutagawa, S.; Noyori,
R. Organic Synthses; Wiley: New York, 1993; Collect. Vol. 8, p 57.
(4) For reviews, see: (a) Bringmann, G.; Walter, R.; Weirich, R. In Methods
of Organic Chemistry (Houben Weyl), 4th ed.; Helmchen, G., Hoffmann,
R. W., Mulzer, J., Schaumann, E., Eds.; Thieme: Stuttgart, Germany,
1995; Vol. E21a, p 567. (b) Bringmann, G.; Walter, R.; Weirich, R. Angew.
Chem., Int. Ed. Engl. 1990, 29, 977. See also: (c) Itoh, T.; Chika, J.;
Shirakami, S.; Ito, H.; Yoshida, T.; Kubo, Y.; Uenishi, J. J. Org. Chem.
1996, 61, 3700. (d) Tuyet, T. M. T.; Harada, T.; Hashimoto, K.; Hatsuda,
M.; Oku, A. J. Org. Chem. 2000, 65, 1335. (e) Nelson, T. D.; Meyers, A.
I. Tetrahedron Lett. 1994, 35, 3259. (f) Rawal, V. H.; Florjancic, A. S.;
Singh, S. P. Tetrahedron Lett. 1994, 35, 8985. (g) Lipshutz, B. H.; Kayser,
F.; Liu, Z.-P. Angew. Chem., Int. Ed. Engl. 1994, 33, 1842. (h) Miyano,
S.; Fukushima, H.; Handa, S.; Ito, H.; Hashimoto, H. Bull. Chem. Soc.
Jpn. 1988, 61, 3249. (i) Nelson, S. G.; Hilfiker, M. A. Org. Lett. 1999, 1,
1379. (j) Kamikawa, K.; Watanabe, T.; Uemura, M. J. Org. Chem. 1996,
61, 1375. (k) Yin, J.; Buchwald, S. L. J. Am. Chem. Soc. 2000, 122, 12051.
(5) For reviews on Fisher carbene complexes and their transformations, see:
(a) Herndon, J. W. Coord. Chem. ReV. 1999, 181, 177. (b) Wulff, W. D.
In Compr. Organomet. Chem. II 1995, 12, 469.
Table 3. Thermal Epimerization of Phenols 9, I, and IIa
1
entry
9
R
R
t, h
I:IIb
I + II,c %
1
2
3
4
5
9a
9b
9c
9e
9g
Me
Me
Me
Et
Me
Et
i-Pr
Me
t-Bu
22
28
48
22
22
94:6
95:5
96:4
96:4
97:3
90
96
95
100
82
i-Pr
a All epimerizations were run in toluene solution (10 mg/mL) at 120 °C
in a sealed tube under Ar. b Determined by 1H NMR integration. c Recovery
after column chromatography.
was only moderate, decreasing gradually with an increase in the
steric size of both R1 (entries 1-4) and R (entries 1, 5 and 6) groups.
It slightly recovers only when both R and R1 represent sterically
demanding substituents (entry 7).
(6) (a) Hsung, R. P.; Quinn, J. F.; Weisenberg, B. A.; Wulff, W. D.; Yap, G.
P. A.; Rheingold, A. L. J. Chem. Soc., Chem. Commun. 1997, 615. (b)
Quinn, J. F.; Powers, T. S.; Wulff, W. D.; Yap, G. P. A.; Rheingold, A.
L. Organometallics 1997, 16, 4945. (c) Hsung, R. P.; Wulff, W. D. J.
Am. Chem. Soc. 1994, 116, 6449. (d) Hsung, R. P.; Wulff, W. D.;
Challener, C. A. Synthesis 1996, 773. (e) Neidlein, R.; Gu¨rtler, S.; Krieger,
C. HelV. Chim. Acta 1994, 77, 2303. (f) Beddoes, R. L.; King, J. D.;
Quayle, P. Tetrahedron Lett. 1995, 36, 3027. (g) Do¨tz, K. H.; Stinner, C.
Tetrahedron Asymm. 1997, 8, 1751. (h) Fogel, L.; Hsung, R. P.; Wulff,
W. D.; Sommer, R. D.; Rheingold, A. L. J. Am. Chem. Soc. 2001, 123,
5580.
(7) Vorogushin, A. V.; Wulff, W. D.; Hansen, H.-J. Org. Lett. 2001, 3, 2641.
(8) For a rewiew, see: (a) Boye, O.; Brossi, A. In The Alkaloids; Brossi, A.,
Cordell, G. A., Eds.; Academic Press: New York, 1992; Vol. 41, p 125.
See also: (b) Shi, Q.; Chen, K.; Chen, X.; Brossi, A.; Verdier-Pinard, P.;
Hamel, E.; McPhail, A. T.; Tropsha, A.; Lee, K.-H. J. Org. Chem. 1998,
63, 4018. (c) Banwell, M. G.; Fam, M.-A.; Gable, R. W.; Hamel, E. J.
Chem. Soc., Chem. Commun. 1994, 2647.
To obtain information about the thermodynamics of the diast-
ereomer distribution, selected allocolchicinoids 9 were subjected
to thermal epimerization conditions. Equilibrium between the
diastereomers was achieved starting from both pure I and II in
each case in 22-48 h at 120 °C. We were glad to discover that in
all cases the equilibrium mixture strongly favored the desired
atropisomers 9,I (Table 3). High levels of material recovery make
these allocolchicinoids selectively available from the benzannulation
reaction of 8 followed by a first-order asymmetric transformation.4e
Assignment of (aR,7S; aS,7R) configuration to 9a,I has been
secured by X-ray diffraction studies. Consequently, the (aR,7R; aS,
7S) configuration has been assigned to 9a,II. The structure of other
phenols 5 and 9 has been determined by analysis of their 1H NMR
spectra12 relative to those of 9a, based on the difference in chemical
shifts of C7-H and coupling constants8b between C7-H and C6-
HaHb for both atropisomers I and II.
(9) Koo, J. J. Am. Chem. Soc. 1953, 75, 720. For modified synthesis, see the
Supporting Information.
(10) Von Roman, U.; Ruhdorfer, J.; Knorr, R. Synthesis 1993, 985.
(11) Substrate 3d (R1 ) t-Bu) thus prepared could not be purified from the
side products. For an alternative route, see the Supporting Information.
(12) For a more detailed description of the stereochemical assignment, see the
Supporting Information.
JA0201505
9
J. AM. CHEM. SOC. VOL. 124, NO. 23, 2002 6513