Chiral Mo3CuS4 Clusters
FULL PAPER
ꢀ8 (c=0.5 in CHCl3); 31P{1H} NMR
(121.47 MHz, CD2Cl2, 258C): d=61.36
(d, 3P), 68.40 ppm (d, 3P); UV/Vis
(CH2Cl2): lmax (e)=508 (2044), 311 nm
(11207 molꢀ1 m3 cmꢀ1); ESI-MS (30 V):
m/z (%): 1396 (100) [M]+; elemental
Table 3. Crystallographic data for [(P)-1]PF6, [(M)-1]PF6, and [(M)-2]CuCl2.
[(P)-1]PF6
[(M)-1]PF6
[(M)-2]CuCl2
empirical formula
formula weight
crystal system
C42H84Mo3P7S4Cl3F6
1442.29
trigonal
C42H84Mo3P7S4Cl3F6
1442.29
trigonal
C42H84Mo3P7S4Cl6F6Cu2
1530.75
trigonal
a []15.404(2)
b []15.404(2)
15.3572(4)
15.3572(4)
23.0235(13)
4702.5(3)
293(2)
14.5248(8)
14.5248(8)
25.103(3)
4586.4 (6)
293(2)
analysis
calcd
(%)
for
Mo3-
Cu2S4Cl6C42H84P6: C 32.93, H 5.54, S
8.37; found: C 32.96, H 5.56, S 8.19.
c []23.058(7)
V [3]4738.4(18)
T [K]293(2)
[Mo3CuS4{(S,S)-Me-BPE}3Cl4]CuCl2,
[(M)-2]CuCl2: This compound was pre-
pared following the procedure de-
scribed for complex [(P)-2]CuCl2 but
using [(M)-1]Cl as the starting materi-
al. Yield: 73 mg (85%). Suitable crys-
tals for X-ray determination for com-
pound [(M)-2]CuCl2 were grown by
slow diffusion of ether into sample sol-
utions in dichloromethane. [a]2D0 =+8
(c=0.5 in CHCl3); 31P{1H} NMR
(121.47 MHz, CD2Cl2, 258C): d=61.32
(d, 3P), 68.35 ppm (d, 3P); UV/Vis
(CH2Cl2): lmax (e)=508 (2192), 311 nm
(11821 molꢀ1 m3 cmꢀ1); ESI-MS (30 V):
m/z (%): 1396 (100) [M]+; elemental
analysis calcd (%) for Mo3Cu2S4Cl6C42H84P6: C 32.93, H 5.54, S 8.37;
found: C 32.94, H 5.52, S 8.15.
space group
Z
R3
3
R3
3
R3
3
m(MoKa) [mmꢀ1]1.068
reflections collected
q range for data collection
unique reflections
goodness-of-fit on F2
R1[a]/wR2[b]
1.528
1.868
12712
11373
6545
1.76 to 29.998
5883 (Rint =0.0367)
1.063
0.0470/0.1230
0.0596/0.1310
ꢀ0.512
1.77 to 28.288
4061 (Rint =0.0532)
1.056
0.0474/0.1193
0.0657/0.1277
0.720 and ꢀ0.874
2.29 to 21.988
2519 (Rint =0.0994)
1.263
0.0710/0.1163
0.1117/0.1250
0.447 and ꢀ0.298
R1[a]/wR2[b] (all data)
residual 1 [eAꢀ3]1.570 and
[a] R1=ꢀjjFo jꢀjFc jj/ꢀFo. [b] wR2=[ꢀ[w(F2oꢀFc2)2]/ꢀ[w(Fo2)2]1/2
.
[1]K. Herbst, M. Monari, M. Brorson, Inorg. Chem. 2002, 41, 1336.
[2]B. K. Burgess, D. J. Lowe, Chem. Rev. 1996, 96, 2983.
[3]U. Riaz, O. J. Curnow, M. D. Curtis, J. Am. Chem. Soc. 1994, 116,
4357.
[4]I. Takei, K. Suzuki, Y. Enta, K. Dohki, T. Suzuki, Y. Mizobe, M.
Hidai, Organometallics 2003, 22, 1790.
[5]T. Wakabayashi, Y. Ishii, T. Murata, Y. Mizobe, M. Hidai, Tetrahe-
dron Lett. 1995, 36, 5585.
[6]T. Murata, Y. Mizobe, H. Gao, Y. Ishii, T. Wakabayashi, F. Nakano,
T. Tanase, S. Yano, M. Hidai, I. Echizen, H. Nanikawa, S. Moto-
mura, J. Am. Chem. Soc. 1994, 116, 3389.
[7]L. Takei, K. Dohki, K. Kobayashi, T. Suzuki, M. Hidai, Inorg.
Chem. 2005, 44, 3768.
[8]R. Llusar, S. Uriel, Eur. J. Inorg. Chem. 2003, 1271.
[9]F. Estevan, M. Feliz, R. Llusar, J. A. Mata, S. Uriel, Polyhedron
2001, 20, 527.
X-ray data collection and structure refinement: Suitable crystals for X-
ray diffraction for compounds [(P)-1]PF6 and [(M)-1]PF6 were grown by
ꢀ
slow diffusion of toluene into a sample solution of the PF6 salt in di-
chloromethane. Replacement of the Clꢀ anion in clusters [(P)-1]Cl and
[(M)-1]Cl were carried out by using silica gel chromatography, eluting
the product with a saturated solution of KPF6 in acetone. In the case of
complex [(M)-2]CuCl2, crystals were grown under nitrogen in a dry box.
The data collection was performed on a Bruker Smart CCD diffractome-
ter using graphite-monochromated MoKa radiation (l=0.71073 ) in an
essentially routine manner. The diffraction frames were integrated by
using the SAINT package and corrected for absorption with
SADABS.[22,23] The crystal parameters and basic information relating to
data collection and structure refinement for the three compounds are
summarized in Table 3.
[10]Chiral molecule nomenclature: P stands for plus and M for minus as
they relate to the rotation of chlorine atoms around the C3 axis with
the capping sulfur pointing towards the viewer (see Scheme 2); for a
concise overview, see: E. L. Eliel, S. H. Wilen, Stereochemistry of
Organic Compounds, Wiley-VCH, New York, 1994, Chapter 14.
[11] Comprehensive Asymmetric Catalysis, Vol. 2 (Eds.: A. Pfaltz, E. N.
Jacobsen, H. Yamamoto), Springer, Berlin, 1999.
[12]M. Feliz, J. M. Garriga, R. Llusar, S. Uriel, M. G. Humphrey, N. T.
Lucas, M. Samoc, B. Luther-Davies, Inorg. Chem. 2001, 40, 6132.
[13]The trinuclear [Mo 3S4(dmpe)3Cl3]+ cluster can be alternatively pre-
pared according to the literature method, see: F. A. Cotton, R.
Llusar, C. T. Eagle, J. Am. Chem. Soc. 1989, 111, 4332.
In all three compounds, the positions of the heavy atoms were deter-
mined by using direct methods and successive-difference electron-density
maps using the SHELXTL 5.10 software package.[24] Difference Fourier
maps were carried out to locate the remaining atoms. Refinement was
performed by means of the full-matrix least-squares method based on F2.
All atoms were refined anisotropically except for the fluorine atoms in
compounds [(P)-1]PF6 and [(M)-1]PF6 and carbon atoms in compound
[(M)-2]CuCl2. The positions of all hydrogen atoms were generated geo-
metrically, assigned isotropic thermal parameters, and allowed to ride on
their respective parent C atoms.
CCDC-270138 ([(P)-1]PF6), CCDC-270139 ([(M)-1]PF6), and CCDC-
270140 ([(M)-2]CuCl2) contain the supplementary crystallographic data
for this paper. These data can be obtained free of charge from the Cam-
quest/cif.
[14]For a detailed description of the catalytic cyclopropanation proce-
dure, see: M. Barberis, J. PØrez-Prieto, K. Herbst, P. Lahuerta, Orga-
nometallics 2002, 21, 1667.
[15]H. Vahrenkamp, J. Organomet. Chem. 1989, 370, 65.
[16]J. C. D. Le, B. L. Pagenkopf, J. Org. Chem. 2004, 69, 4177.
[17]A. A. Boezio, A. B. Charette, J. Am. Chem. Soc. 2003, 125, 1692.
[18]The reaction of the chiral phosphane, namely ( S)-2,2’-bis(diphenyl-
phosphino)-1,1’-binaphthyl, (S)-BINAP, with [H4Ru(CO)12]resulted
in the formation of two isomers. The isomer displaying a bridging
coordination mode of the BINAP ligand was obtained with a unique
stereoselectivity and consists of a chiral compound of the “(S)-Ru4”
core type, see: a) S. P. Tunik, T. S. Pilyugina, I. O. Koshevoy, S. I. Se-
livanov, M. Haukka, T. A. Pakkanen, Organometallics 2004, 23, 568;
b) P. Homanen, R. Persson, M. Haukka, T. A. Pakkanen, E. Nord-
lander, Organometallics 2000, 19, 5568.
Acknowledgements
We thank Generalitat Valenciana (Grants IIARCO/2004/163 and
IIARCO/2004/158) and the “Ministerio de Ciencia y Tecnología” (Grant
BQU2002-00313) for financial support of this work. The European Coop-
eration in the Field of Scientific and Technical Research (COST) Action
D24 (WG-0008-02) is also gratefully acknowledged.
Chem. Eur. J. 2006, 12, 1486 – 1492
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1491