5706 J. Phys. Chem. A, Vol. 101, No. 31, 1997
Brown and Bushweller
for methyl (1.7 kcal/mol)35 and vinyl (1.5-1.7 kcal/mol).36
N-Ethyl and N-allyl substituents show very similar conforma-
tional preferences in analogous tertiary amines.
(3) Orville-Thomas, W. J., Ed. Internal Rotation in Molecules; J. Wiley
and Sons: New York, 1974.
(4) Bushweller, C. H.; Anderson, W. G.; Stevenson, P. E.; Burkey, D.
L.; O’Neil, J. W. J. Am. Chem. Soc. 1974, 96, 3892. Also see: Bushweller,
C. H.; Anderson, W. G.; Stevenson, P. E.; O’Neil, J. W. J. Am. Chem. Soc.
1975, 97, 4338.
(5) (a) Tsuboi, M.; Hirakawa, A. Y.; Tamagake, K. J. J. Mol. Spectrosc.
1967, 22, 272. (b) Nishikawa, T.; Itoh, T.; Shimoda, K. J. Am. Chem. Soc.
1977, 99, 5570. (c) Wollrab, J. W.; Laurie, V. W. J. Chem. Phys. 1968,
48, 5058. (d) Erlandson, G.; Gurdy, W. Phys. ReV. 1957, 10, 513. (e)
Lide, D. R.; Mann, D. E. J. Chem. Phys. 1958, 28, 572.
(6) Durig, J. R.; Li, Y. S. J. Chem. Phys. 1975, 63, 4110. Tsuboi, M.;
Tamagake, K. J.; Hirakawa, A. Y.; Yamaguchi, J.; Nakagava, H.; Manocha,
A. S.; Tuazon, E. C.; Fateley, W. G. J. Chem. Phys. 1975, 63, 5177.
(7) Krueger, P. J.; Jan, J. Can. J. Chem. 1970, 48, 3229.
(8) Durig, J. R.; Compton, D. A. C. J. Phys. Chem. 1979, 83, 2873.
(9) Durig, J. R.; Cox, F. O. J. Mol. Struct. 1982, 95, 85.
(10) Swalen, J. D.; Ibers, J. A. Chem. Phys. 1962, 36, 1914.
Experimental Section
NMR Spectra. The NMR spectra were recorded by using a
Bruker WM-250 NMR system with a pole gap modified to allow
safe operation (no magnet O-ring freezing) down to 93 K. NMR
sample temperature was varied by using a custom-built cold
nitrogen gas delivery system used in conjunction with the Bruker
BVT-1000 temperature control unit. Temperature measurement
is accurate to (3 K. NMR samples were prepared on a vacuum
line in precision 5 or 10 mm tubes and sealed after four freeze-
pump-thaw cycles. All spectra are referenced to tetramethyl-
silane at 0 ppm.
(11) Tsuboi, M.; Hirakawa, A. Y.; Takamitsu, I.; Sasaki, T.; Tamagake,
K. J. J. Chem. Phys. 1964, 41, 2721.
(12) Weston, R. E., Jr. J. Am. Chem. Soc. 1954, 76, 2645.
N-Allyl-N-methyl-2-aminopropane (AMAP). Allylamine
(4.0 g, 0.07 mol) was added to a 500 mL three-neck round
bottom flask equipped with a drying tube. Methanol (250 mL)
was added to the flask. With cooling and stirring, acetone (8.2
g, 0.14 mol) and sodium cyanoborohydride (9.0 g, 0.14 mol)
were added to the flask. The mixture was stirred at room
temperature for 3 days. With cooling and stirring, the mixture
was acidified to pH < 3 by using concentrated HCl (20 mL).
The liquid was removed under vacuum. The resulting yellow
residue was dissolved in 50 mL of water, and the mixture was
washed with five 50 mL portions of diethyl ether. The aqueous
layer was separated and added to a three-neck round bottom
flask fitted with an efficient condenser. Diethyl ether (50 mL)
was added to the flask. With cooling and stirring, solid KOH
(15 g) was added to pH > 10. NaCl (5 g) was then added to
the mixture. The mixture was stirred at room temperature for
24 h and filtered. The ether layer was separated, dried over
Na2SO4 for 2 h, and filtered. The presence of N-allyl-2-
(13) Oki, M. In Applications of Dynamic NMR Spectroscopy to Organic
Chemistry; VCH Publishers: New York, 1985. Sandstrom, J. Dynamic
NMR Spectroscopy; Academic Press: New York, 1982. Cotton, F. A.
Dynamic Nuclear Magnetic Resonance Spectroscopy; Academic Press: New
York, 1975.
(14) Burkert, U.; Allinger, N. L. Molecular Mechanics; American
Chemical Society: Washington, DC, 1984. Allinger, N. L. AdV. Phys. Org.
Chem. 1976, 13, 1.
(15) Bushweller, C. H.; Fleischman, S. H.; Grady, G. L.; McGoff, P.;
Rithner, C. D.; Whalon, M. R.; Brennan, J. G.; Marcantonio, R. P.;
Domingue, R. P. J. Am. Chem. Soc. 1982, 104, 6224.
(16) Fleischman, S. H.; Weltin, E. E.; Bushweller, C. H. J. Comput.
Chem. 1985, 6, 249.
(17) Fleischman, S. H.; Whalon, M. R.; Rithner, C. D.; Grady, G. L.;
Bushweller, C. H. Tetrahedron Lett. 1982, 4233.
(18) Brown, J. H.; Bushweller, C. H. J. Am. Chem. Soc. 1992, 114,
8153.
(19) Brown, J. H.; Bushweller, C. H. J. Phys. Chem. 1994, 98, 11411.
(20) Danehey, C. T., Jr.; Grady, G. L.; Bonneau, P. R.; Bushweller, C.
H. J. Am. Chem. Soc. 1988, 110, 7269.
(21) Brown, J. H.; Bushweller, C. H. J. Am. Chem. Soc. 1995, 117,
1
aminopropane was confirmed by H NMR. The solution of
12567.
N-allyl-2-aminopropane in diethyl ether was added to a three-
neck round bottom flask fitted with an efficient condenser.
Formaldehyde (37 %; 11.5 g, 0.14 mol) was then added to the
diethyl ether solution. With cooling and stirring, formic acid
(97 %; 6.6 g, 0.14 mol) was added dropwise. The mixture was
refluxed for 24 h. With cooling and stirring, concentrated HCl
(10 g) was added. The bulk of the liquid was removed under
vacuum leaving a wet orange solid amine hydrochloride. The
amine hydrochloride was placed in a three-neck round bottom
flask equipped with an efficient condenser. With cooling and
stirring, the amine hydrochloride was neutralized by the slow
addition of aqueous 40 % NaOH to pH > 10. The mixture
was filtered. The top layer was separated and dried over Na2-
SO4 for 2 h. N-Allyl-N-methyl-2-aminopropane (AMAP) was
purified on a 25 % SF-96/5 % XE-60 on Chromosorb W GLC
column (20 ft × 3/8 in.) at 423 K. The structure of AMAP
was confirmed by 1H and 13C NMR (see text) and mass
spectrometry m/e (M+): 113.
(22) Bock, H.; Coebel, I.; Havlas, Z.; Liedle, S.; Oberhammer, H. Angew.
Chem., Int. Ed. Engl. 1991, 30, 187.
(23) Lunazzi, L.; Macciantelli, D.; Grossi, L. Tetrahedron 1983, 39,
305.
(24) Berger, P. A.; Hobbs, C. F. Tetrahedron Lett. 1978, 1905.
(25) Forsyth, D. A.; Johnson, S. M. J. Am. Chem. Soc. 1993, 115, 3364.
(26) Forsyth, D. A.; Johnson, S. M. J. Am. Chem. Soc. 1994, 116, 11481.
(27) Roussy, G.; Demaison, J. J. Mol. Spectrosc. 1971, 38, 535. Botskor,
I.; Rudolph, H. D. J. Mol. Spectrosc. 1974, 53, 15. Botskor, I.; Rudolph,
H. D.; Roussy, G. J. Mol. Spectrosc. 1974, 52, 457. Botskor, I. J. Mol.
Spectrosc. 1978, 71, 430.
(28) Hamada, Y.; Tsuboi, M.; Yamanouchi, K.; Matsuzawa, T.; Ku-
chitsu, K. J. Mol. Struct. 1990, 224, 345.
(29) Kao, J.; Seeman, J. I. J. Comput. Chem. 1984, 5, 200.
(30) Allinger, N. L. QCPE 1987, Program No. MM2(87). Profeta, S.,
Jr.; Allinger, N. L. J. Am. Chem. Soc. 1985, 107, 1907.
(31) Brown, J. H.; Bushweller, C. H. QCPE 1993, Program No. 633.
For a PC-based program to plot the DNMR spectra, see: Brown, J. H.
QCPE 1993, Program No. QCMP 123.
(32) Hamlow, H. P.; Okuda, S. Tetrahedron Lett. 1964, 37, 2553.
Lambert, J. B.; Keske, R. G.; Carhart, R. E.; Jovanovich, A. P. J. Am. Chem.
Soc. 1967, 89, 3761.
Acknowledgment. C.H.B. is grateful to the National Science
Foundation (Grant CHE80-24931) and to the University of
Vermont Committee on Research and Scholarship for partial
support of this research.
(33) A two-letter designation is used to name the various conformations.
The first letter defines the orientation of the vinyl group with respect to the
lone pair (G denotes gauche to the lone pair and to the N-methyl group; G′
denotes gauche to the lone pair and to the isopropyl group; A denotes anti
to the lone pair). The second letter defines the orientation of the isopropyl
methine proton (G denotes gauche to the lone pair and to the N-methyl
group; G′ denotes gauche to the lone pair and to the allyl group; A denotes
anti to the lone pair).
References and Notes
(34) Bushweller, C. H. In Conformational BehaVior of Six-Membered
Rings. Analysis, Dynamics, and Stereoelectronic Effects; Juaristi, E., Ed.;
VCH Publishers: New York, 1995.
(1) For a recent review, see: Bushweller, C. H. In Acyclic Organo-
nitrogen Stereodynamics; Lambert, J. B., Takeuchi, Y., Eds.; VCH
Publishers: New York, 1992.
(35) Anet, F. A. L.; Bradley, C. H.; Buchanan, G. W. J. Am. Chem.
Soc. 1971, 93, 258. Booth, H.; Everett, J. R. J. Chem. Soc., Perkin Trans.
2 1980, 255.
(36) Eliel, E. L.; Manoharan, M. J. Org. Chem. 1981, 46, 1959.
Buchanan, G. W. Can. J. Chem. 1982, 60, 2908.
(2) For previous reviews, see: Lambert, J. B. Top Stereochem. 1971,
6, 19. Lehn, J. M. Fortschr. Chem. Forsch. 1970, 15, 311. Payne, P. W.;
Allen, L. C. In Applications of Electronic Structure Theory; Schaefer, H.
F., Ed.; Plenum Press: New York, 1977; Vol. 4. Rauk, A.; Allen, L. C.;
Mislow, K. Angew. Chem., Int. Ed. Engl. 1970, 9, 400.