2
128
A. V. Dolzhenko et al. / Tetrahedron Letters 50 (2009) 2124–2128
0
0
3
8
01–808; (c) Atkinson, M. R.; Komzak, A. A.; Parkes, E. A.; Polya, J. B. J. Chem.
and 4.9 Hz, 1H, H-5 ), 8.18 (dt, 3J 7.9, 4J 1.7 Hz, 1H, H-4 ), 8.54 (dd, J 4.2, 4
J
0 0
1.5 Hz, 1H, H-6 ), 9.06 (d, J 1.5 Hz, 1H, H-2 ), 12.22 and 13.41* (two s, 1H, NH);
13
4
Soc. 1954, 4508–4510.
Alfonsi, K.; Colberg, J.; Dunn, P. J.; Fevig, T.; Jennings, S.; Johnson, T. A.; Kleine, H.
P.; Knight, C.; Nagy, M. A.; Perry, D. A.; Stefaniak, M. Green Chem. 2008, 10, 31–36.
0. (a) Hailes, H. C. Org. Process Res. Dev. 2007, 11, 114–120; (b) Li, C. J.; Chen, L.
Chem. Soc. Rev. 2006, 35, 68–82; (c)Organic Reactions in Water: Principles
Strategies and Applications; Lindstroem, U. M., Ed.; Blackwell: Oxford, UK, 2007.
1. General procedure for the conventional synthesis of 3(5)-amino-5(3)-het(aryl)-
0 0 0
6
C NMR (75 MHz, DMSO-d ): d 123.6 (C-5 ), 127.9 (C-3 ), 132.4 (C-4 ), 146.5
1
9
.
0
0
(C-2 ), 149.0 (C-6 ), 156.1 and 157.5 (C-3 and -5). Compound 2j: H NMR
), 7.78 (dd, J 4.5, 4
3
J
1
(300 MHz, DMSO-d
6
): d 5.48* and 6.22 (two s, 2H, NH
2
0
0
3
0
0
1.5 Hz, 2H, H-3 and -5 ), 8.60 (d, J 5.7 Hz, 2H, H-2 and -6 ), 12.35 and 13.64*
(two s, 1H, NH); C NMR (75 MHz, DMSO-d ): d 119.5 (C-3 and -5 ), 139.2 (C-
4 ), 149.9 (C-2 and -6 ), 156.4 and 157.6 (C-3 and -5). *—signals of minor
tautomers A.
13
0
0
6
0
0
0
1
1
,2,4-triazoles (2): (Het)arylamidoguanidines (1) were heated under reflux in
water (see Table 1 for volume and time). After cooling, the precipitated
products 2 were filtered, washed with ice-cold water and dried. The purity of 2
was satisfactory; for analysis, the samples were recrystallized from water or aq
EtOH (2e,g). The reaction can be scaled-up from 0.5 g to 20 g without
12. (a) Jindal, R.; Bajaj, S. Curr. Org. Chem. 2008, 12, 836–849; (b) Polshettiwar, V.;
Varma, R. S. Pure Appl. Chem. 2008, 80, 777–790; (c) El Ashry, E. S. H.; Kassem,
A. A.; Ramadan, E. Adv. Heterocycl. Chem. 2008, 90, 1–123; (d) Shipe, W. D.;
Yang, F.; Zhao, Z.; Wolkenberg, S. E.; Nolt, M. B.; Lindsley, C. W. Heterocycles
2006, 70, 655–689; (e) Suna, E.; Mutule, I. Top. Curr. Chem. 2006, 266, 49–101;
(f) El Ashry, E. S. H.; Ramadan, E.; Kassem, A. A.; Hagar, M. Adv. Heterocycl.
Chem. 2005, 88, 1–110.
13. (a) Kahveci, B.; Ozil, M.; Serdar, M. Heteroat. Chem. 2008, 19, 38–42; (b)
Katritzky, A. R.; Khashab, N. M.; Kirichenko, N.; Singh, A. J. Org. Chem.
2006, 71, 9051–9056; (c) Wu, D. Q.; He, J. L.; Wang, J. K.; Wang, X. C.;
Zong, Y. X. J. Chem. Res. 2006, 293–294; (d) Zamani, K.; Bagheri, S.
Phosphorus, Sulfur Silicon Relat. Elem. 2006, 181, 1913–1918; (e) Li, D.;
Bao, H.; You, T. Heterocycles 2005, 65, 1957–1962; (f) Yeung, K. S.;
Farkas, M. E.; Kadow, J. F.; Meanwell, N. A. Tetrahedron Lett. 2005, 46,
3429–3432; (g) Rostamizadeh, S.; Tajik, H.; Yazdanfarahi, S. Synth.
Commun. 2003, 33, 113–117; (h) Koshima, H.; Hamada, M.; Tani, M.;
Iwasaki, S.; Sato, F. Heterocycles 2002, 57, 2145–2148; (i) Woisel, P.;
Cazier, F.; Surpateanu, G.; Baudel, V.; Boursier, V. Heterocycl. Commun.
2002, 8, 71–74; (j) Kidwai, M.; Misra, P.; Bhushan, K. R.; Dave, B. Synth.
Commun. 2000, 30, 3031–3040; (k) Bentiss, F.; Lagrenee, M.; Barbry, D.
Tetrahedron Lett. 2000, 41, 1539–1541.
14. (a) Polshettiwar, V.; Varma, R. S. Chem. Soc. Rev. 2008, 37, 1546–1557; (b)
Polshettiwar, V.; Varma, R. S. Acc. Chem. Res. 2008, 41, 629–639; (c) Dallinger,
D.; Kappe, C. O. Chem. Rev. 2007, 107, 2563–2591.
15. General procedure for the microwave synthesis of 3(5)-amino-5(3)-het(aryl)-1,2,4-
triazoles (2): (Het)arylamidoguanidines (1, 1 mmol) were irradiated in 3 ml of
water using a CEM ‘Discover’ microwave apparatus, (see Tables 2 and 3 for
power and time). After cooling, the precipitated products 2 were filtered,
washed with ice-cold water and dried.
16. (a) Claramunt, R. M.; Lopez, C.; Santa Maria, M. D.; Sanz, D.; Elguero, J. Prog.
Nucl. Magn. Reson. Spectrosc. 2006, 49, 169–206; (b) Kleinpeter, E. Adv. Mol.
Struct. Res. 2000, 6, 97–129; (c) Elguero, J.; Katritzky, A. R.; Denisko, O. V. Adv.
Heterocycl. Chem. 2000, 76, 1–84.
1
significant changes in the yields. Compound 2a: H NMR (300 MHz, DMSO-
3
0
6 2
): d 5.29* and 6.05 (two s, 2H, NH
), 7.32 (t, J 7.2 Hz, 1H, H-4 ), 7.39 (t, J
3
3
d
7
(
0 0 0 0
.2 Hz, 2H, H-3 and -5 ), 7.89 (d, J 6.8 Hz, 2H, H-2 and -6 ), 12.04 and 13.20*
13
0
0
two s, 1H, NH); C NMR (75 MHz, DMSO-d
6
): d 125.4 (C-3 and -5 ), 128.1 (C-
0
0
0
0
4
5
6
), 128.3 (C-2 and -6 ), 132.3 (C-1 ), 152.4*, 157.3, 158.4 and 164.4* (C-3 and -
). Compound 2b: 1H NMR (300 MHz, DMSO-d
6
0
): d 2.32 (s, 3H, Me), 5.25* and
3
0
3
.01 (two s, 2H, NH
2
), 7.19 (d, J 7.9 Hz, 2H, H-3 and -5 ), 7.77 (d, J 7.9 Hz, 2H,
0
0
13
H-2 and -6 ), 11.96 and 13.09* (two s, 1H, NH); C NMR (75 MHz, DMSO-d
6
): d
0.8 (Me), 125.4 (C-3 and -5 ), 128.9 (C-2 and -6 ), 129.6 (C-1 ), 137.4 and
0
0
0
0
0
2
1
0
1
39.1* (C-4 ), 152.5*, 157.3, 158.5 and 164.2* (C-3 and -5). Compound 2c:
): d 3.78 (s, 3H, OMe), 5.21* and 5.99 (two s, 2H, NH
H
NMR (300 MHz, DMSO-d
6
6
2
),
.95 (d, 3J 8.7 Hz, 2H, H-3 and -5 ), 7.81 (d, J 8.7 Hz, 2H, H-2 and -6 ), 11.90
0
0
3
0
0
1
3
and 12.99* (two s, 1H, NH); C NMR (75 MHz, DMSO-d
): d 55.0 (OMe), 113.8
C-3 and -5 ), 125.0 (C-1 ), 126.8 (C-2 and -6 ), 152.3*, 157.2, 158.4 and 164.2*
6
0
0
0
0
0
(
(
0
1
C-3 and -5), 159.4 and 160.1* (C-4 ). Compound 2d: H NMR (300 MHz,
DMSO-d
3
6
): d 5.31* and 6.04 (two s, 2H, NH
2
), 7.22 (dd, J 8.7, 3
3
J
HF 8.7 Hz, 2H, H-
0
0
3
4
0
0
2
and -5 ), 7.91 (dd, J 8.7,
J
HF 5.7 Hz, 2H, H-2 and -6 ), 12.05 and 13.18* (two
13
0
0
s, 1H, NH); C NMR (75 MHz, DMSO-d
6
): d 115.2 (d,
J
CF 22.3 Hz, C-3 and -5 ),
1
27.2 (d, 3
C-3 and -5), 162.1 (d,
0 0 0
JCF 8.2 Hz, C-2 and -6 ), 128.9 (d, JCF 2.9 Hz, C-1 ), 157.3 and 157.5
1 1
4
0
JCF 244.6 Hz, C-4 ). Compound 2e: H NMR (300 MHz,
3
(
0
DMSO-d
5
6
): d 5.37* and 6.10 (two s, 2H, NH
2
), 7.46 (d, J 8.3 Hz, 2H, H-3 and -
0
3
0
0
13
), 7.88 (d, J 8.3 Hz, 2H, H-2 and -6 ), 12.12 and 13.25* (two s, 1H, NH);
C
0 0 0 0
6
NMR (75 MHz, DMSO-d ): d 126.9 (C-3 and -5 ), 128.4 (C-2 and -6 ), 131.2 (C-
1
0
0
), 132.6 (C-4 ), 157.4 (C-3 and -5). Compound 2f: H NMR (300 MHz, DMSO-
3
1
0
d
6
): d 5.29* and 6.07 (two s, 2H, NH
2
), 6.54 (dd, J 3.0 and 1.5 Hz, 1H, H-4 ), 6.67
3
0
3
0
(
d, J 3.0 Hz, 1H, H-3 ), 7.68 (d, J 1.5 Hz, 1H, H-5 ), 12.07 and 13.20* (two s, 1H,
13
0
0
0
NH); C NMR (75 MHz, DMSO-d
6
): d 107.4 (C-4 ), 111.2 (C-3 ), 142.5 (C-5 ),
47.6 (C-2 ), 152.1 and 156.9 (C-3 and -5). Compound 2g: H NMR (300 MHz,
), 7.07 (dd, J 4.9 and 3.4 Hz, 1H, H-
), 7.40 (d, J 3.0 Hz, 1H, H-3 ), 7.46 (d, J 4.9 Hz, 1H, H-5 ), 12.02 and 13.16*
): d 124.2 (C- 4 ), 125.4 (C-5 ),
27.4 (C-3 ), 135.5 (C-2 ), 154.7 and 157.1 (C-3 and -5). Compound 2h: H NMR
0
1
1
3
DMSO-d
6
): d 5.34* and 6.09 (two s, 2H, NH
2
0
3
0
3
0
4
17. Curtis, A. D. M. Sci. Synth. 2004, 13, 603–639.
18. We used the Hammett constant values from: Hansch, C.; Leo, A.; Taft, R. W.
Chem. Rev. 1991, 91, 165–195.
13
0
0
(
two s, 1H, NH); C NMR (75 MHz, DMSO-d
6
0
0
1
1
(
5
(
5
1
300 MHz, DMSO-d
6
): d 5.33* and 6.08 (two s, 2H, NH
2
), 7.25–7.51 (m, 1H, H-
19. Buzykin, B. I.; Mironova, E. V.; Nabiullin, V. N.; Gubaidullin, A. T.; Litvinov, I. A.
Russ. J. Gen. Chem. 2006, 76, 1471–1486.
0
0
0
0
), 7.74–8.00 (m, 2H, H-3 and -4 ), 8.52–8.69 (m, 1H, H-6 ), 12.23 and 13.45*
13
13
two s, 1H, NH); C NMR C NMR (75 MHz, DMSO-d
6
): d 120.7* and 120.9 (C-
0
0
0
0
), 123.0 and 124.3* (C-3 ), 136.5 and 137.5* (C-4 ), 146.5* and 150.7 (C-2 ),
0
1
49.2 (C-6 ), 151.6*, 157.2, 158.6 and 164.4* (C-3 and -5). Compound 2i:
H
NMR (300 MHz, DMSO-d
6
): d 5.42* and 6.18 (two s, 2H, NH
2
), 7.43 (dd, 3J 7.5