Journal of Chemical & Engineering Data
ARTICLE
Group Additivity. 1. Hydrocarbon Compounds. J. Phys. Chem. Ref. Data
(37) Badelin, V. G.; Kulikov, O. V.; Vatagin, V. S.; Udzig, E.;
Zielenkiewicz, A.; Zielenkiewicz, W.; Krestov, G. A. Physico-Chemical
Properties of Peptides and Their Solutions. Thermochim. Acta 1990,
169, 81–93.
1
993, 22, 597–618.
ꢁ
(
19) Ru ꢁz i ꢁc ka, V., Jr.; Domalski, E. S. Estimation oftheHeat-Capacities
of Organic Liquids as a Function of Temperature Using Group Additivity.
2
. Compounds of Carbon, Hydrogen, Halogens, Nitrogen, Oxygen, and
(38) Skoulika, S.; Sabbah, R. Thermodynamique de Composes
Azotes X. Etude Thermochimique de Quelques Acides ω-Amines.
Thermochim. Acta 1983, 61, 203–214.
Sulfur. J. Phys. Chem. Ref. Data 1993, 22, 619–657.
ꢁ
(
20) Zabransky, M.; Ru ꢁz i ꢁc ka, V. Estimation of the Heat Capacity of
Organic Liquids as a Function of Temperature Using Group Additivity:
An Amendment. J. Phys. Chem. Ref. Data 2004, 33, 1071–1081.
(39) Paukov, I. E.; Kovalevskaya, Y. A.; Boldyreva, E. V.; Drebush-
chak, V. A. Heat Capacity of β-Alanine in a Temperature Range Between
6 and 300 K. J. Therm. Anal. Calorim. 2009, 98, 873–876.
(40) Sabbah, R.; Laffitte, M. The Enthalpy of Formation of Sarcosine
in the Solid State. J. Chem. Thermodyn. 1977, 9, 1107–1108.
(41) Harada, K.; Okawara, T. Sterically Controlled Syntheses of
Optically Active Organic Compounds. XVII. Asymmetric Syntheses of
Amino Acids by Addition of Benzoyl Cyanide to the Azomethine
Compounds. Bull. Chem. Soc. Jpn. 1973, 46, 191–193.
(
21) G ꢀo ralski, P.; Tkaczyk, M. Heat Capacities of Some Liquid α,ω-
Alkanediamines in the Temperature Range Between (293.15 and
53.15) K. J. Chem. Eng. Data 2010, 55, 953–955.
22) Acree, W., Jr.; Chickos, J. S. Phase Change Enthalpies and
Entropies of Liquid Crystals. J. Phys. Chem. Ref. Data 2006, 35, 1051–1330.
23) Jim ꢀe nez, P.; Roux, M. V.; D ꢀa valos, J. Z.; Temprado, M. Heat
3
(
(
Capacities and Enthalpies of Transitions of Three Nitrobenzonitriles.
Thermochim. Acta 2002, 394, 25–29.
(42) Zilkha, A.; Rachman, E. S.; Rivlin, J. Syntheses of β-Amino
Acids and Their N-Alkyl Derivatives. J. Org. Chem. 1961, 26, 376–380.
(43) Marti, E. E. Purity Determination by Differential Scanning
Calorimetry. Thermochim. Acta 1973, 5, 173–220.
(44) Della Gatta, G.; Richardson, M. J.; Sarge, S. M.; Stølen, S.
Standards, Calibration, and Guidelines in Microcalorimetry. Part 2.
Calibration Standards for Differential Scanning Calorimetry. Pure Appl.
Chem. 2006, 78, 1455–1476.
(45) Gmelin, E.; Sarge, S. M. Temperature, Heat and Heat Flow
Rate Calibration of Differential Scanning Calorimeters. Thermochim.
Acta 2000, 347, 9–13.
(46) GEFTA (Gesellschaft f €u r Thermische Analyse, Germany).
Gmelin, E.; Sarge, S. M. Calibration of Differential Scanning Calori-
meters. Pure Appl. Chem. 1995, 67, 1789–1800.
(24) Roux, M. V.; Temprado, M.; Jim ꢀe nez, P.; D ꢀa valos, J. Z.; Foces-
Foces, C.; García, M. V.; Redondo, M. I. Thermophysical, Crystalline
and Infrared Study of 2- and 3-Thiophenecarboxylic acids. Thermochim.
Acta 2003, 404, 235–244.
(
25) Roux, M. V.; Temprado, M.; Jim ꢀe nez, P.; Guzm ꢀa n-Mejía, R.;
Juaristi, E.; Chickos, J. S. Heat Capacities of Thiane Sulfones and Thiane
Sulfoxide. Refining of C Group Values for Organosulfur Compounds
and Their Oxides. Thermochim. Acta 2003, 406, 9–16.
26) Roux, M. V.; Temprado, M.; Jim ꢀe nez, P.; Foces-Foces, C.;
p
(
García, M. V.; Redondo, M. I. 2- and 3-Furancarboxylic Acids: A
Comparative Study Using Calorimetry, IR Spectroscopy and X-ray
Crystallography. Thermochim. Acta 2004, 420, 59–66.
(27) Temprado, M.; Roux, M. V.; Jim ꢀe nez, P.; Guzm ꢀa n-Mejía, R.;
Juaristi, E. Thermophysical Properties of Sulfur Heterocycles: Thiane
and Thiophene Derivatives. Thermochim. Acta 2006, 441, 20–26.
(47) Sabbah, R.; Xu-wu, A.; Chickos, J. S.; Planas Leit ~a o, M. L.; Roux,
M. V.; Torres, L. A. Reference Materials for Calorimetry and Differential
Thermal Analysis. Thermochim. Acta 1999, 331, 93–204.
(48) Mraw, S. C.; Naas, D. F. The Measurement of Accurate Heat
Capacities by Differential Scanning Calorimetry. Comparison of DSC
Results on Pyrite (100 to 800 K) with Literature Values from Precision
Adiabatic Calorimetry. J. Chem. Thermodyn. 1979, 11, 567–584.
(49) O'Neill, M. J. Measurement of Specific Heat Functions by
Differential Scanning Calorimetry. Anal. Chem. 1966, 38, 1331–1336.
(50) Callanan, J. E.; Sullivan, S. A. Development of Standard
Operating Procedures for Differential Scanning Calorimeters. Rev. Sci.
Instrum. 1986, 57, 2584–2592.
(28) Temprado, M.; Roux, M. V.; Parameswar, A. R.; Demchenko,
A. V.; Chickos, J. S.; Liebman, J. F. Thermophysical Properties in
Medium Temperature Range of Several Thio and Dithiocarbamates.
J. Therm. Anal. Calorim. 2008, 91, 471–475.
(
29) Temprado, M.; Roux, M. V.; Chickos, J. S. Some Thermo-
physical Properties of Several Solid Aldehydes. J. Therm. Anal. Calorim.
008, 94, 257–262.
30) Temprado, M.; Roux, M. V.; Ros, F.; Notario, R.; Segura, M.;
2
(
Chickos, J. S. Thermophysical Study of Several Barbituric Acid Deriva-
tives by Differential Scanning Calorimetry (DSC). J. Chem. Eng. Data
2
011, 56, 263–268.
31) Foces-Foces, C.; Roux, M. V.; Notario, R.; Segura, M. Thermal
(51) Pak, J.; Qiu, W.; Pyda, M.; Nowak-Pyda, E.; Wunderlich, B. Can
One Measure Precise Heat Capacities with DSC or TMDSC?: A Study
of the Baseline and Heat-Flow Rate Correction. J. Therm. Anal. Calorim.
2005, 82, 565–574.
(52) Rudtsch, S. Uncertainty of Heat Capacity Measurements with
Differential Scanning Calorimeters. Thermochim. Acta 2002, 382, 17–25.
(53) Wieser, M. E. Atomic Weights of the Elements 2009 (IUPAC
technical report). Pure Appl. Chem. 2011, 382, 17–25.
(
Behavior and Polymorphism in Medium-High Temperature Range of
the Sulfur Containing Amino Acids L-Cysteine and L-Cystine. J. Therm.
Anal. Calorim. 2011, DOI 10.1007/s10973-011-1302-6.
(
32) Ribeiro da Silva, M. A. V.; Ribeiro da Silva, M. D. M. C.; Santos,
A. F. L. O. M.; Roux, M. V.; Foces-Foces, C.; Notario, R.; Guzm ꢀa n-
Mejía, R.; Juaristi, E. Experimental and Computational Thermochemical
Study of α-Alanine (DL) and β-Alanine. J. Phys. Chem. B 2010, 114,
(54) Chickos, J. S.; Acree, W. E., Jr. Total Phase Change Entropies
and Enthalpies: An Update on Fusion Enthalpies and Their Estimation.
Thermochim. Acta 2009, 495, 5–13.
16471–16480.
(33) Notario, R.; Roux, M. V.; Foces-Foces, C.; Ribeiro da Silva,
M. A. V.; Ribeiro da Silva, M. D. M. C.; Santos, A. F. L. O. M.; Guzm ꢀa n-
Mejía, R.; Juaristi, E. Experimental and Computational Thermochemical
Study of N-Benzyl-alanines. J. Phys. Chem. B 2011, 115, 9401–9409.
(34) Huffman, H. M.; Ellis, E. L. Thermal data. VIII. The Heat
Capacities, Entropies and Free Energies of Some Amino Acids. J. Am.
Chem. Soc. 1937, 59, 2150–2152.
(35) Spink, C. H.; Wads €o , I. Thermochemistry of Solutions of
Biochemical Model Compounds. 4. The Partial Molar Heat Capacities
of Some Amino Acids in Aqueous Solution. J. Chem. Thermodyn. 1975,
7, 561–572.
(
36) Kulikov, O. V.; Kozlov, V. A.; Malenkina, L. I.; Badelin, V. G.
Heat Capacities of Amino Acids and Peptides and Excess Characteristics
of Their Aqueous Solutions. Sbornik Nauch. Trud., Termodin. Rast.
Neelect., Ivanovo, Inst. Nevod. Rast. Akad. Nauk, SSSR 1989, 36ꢀ42.
(Taken from NIST Webbook: http://webbook.nist.gov/chemistry).
3
812
dx.doi.org/10.1021/je200292z |J. Chem. Eng. Data 2011, 56, 3807–3812