10.1002/anie.201811717
Angewandte Chemie International Edition
COMMUNICATION
reagent with iodide 2. All told, the versatile chemistry described
in this report enables access to natural and non-natural toxin-
based probes to support our studies of NaV structure, function,
and physiology.[1,15]
A. Varvoglis, J. A. Callies, V. V. Zhdankin, Tetrahedron Lett. 1997, 38,
8401–8404.
T. Hama, X. Liu, D. A. Culkin, J. F. Hartwig, J. Am. Chem. Soc. 2003,
125, 11176–11177.
[18]
[19]
[20]
W. A. Moradi, S. L. Buchwald, J. Am. Chem. Soc. 2001, 123, 7996–
8002.
Acknowledgements
T. Magauer, J. Mulzer, K. Tiefenbacher, Org. Lett. 2009, 11, 5306–
5309.
We thank Professor Merritt Maduke for generous use of laboratory
space and equipment. J.R.W and R.T-T are grateful to the Center for
Molecular Analysis and Design (CMAD) at Stanford and the National
Science Foundation, respectively, for fellowship awards. This work
has been supported by a grant from the NIH (GM117263-01A1) and
by a gift from Amgen, Inc.
[21] Q. Xiao, W.-W. Ren, Z.-X. Chen, T.-W. Sun, Y. Li, Q-D. Ye, J.-X. Gong,
F.-K. Meng, L. You, Y.-F. Liu, M.-Z. Zhao, L.-M. Xu, Z.-H. Shan, Y. Shi,
Y.-F. Tang, J.-H. Chen, Z. Yang, Angew. Chem. Int. Ed. 2011, 50,
7373–7377.
[22]
[23]
E.-I. Negishi, J. Organomet. Chem. 1999, 576, 179–194.
C. R. Johnson, J. P. Adams, M. P. Braun, C. B. W. Senanayake,
Tetrahedron Lett. 1992, 33, 919–922.
Keywords: guanidinium toxins • sodium channel • sulfoxide
[24]
X. Han, B. Stoltz, E. J. Corey, J. Am. Chem. Soc. 1999, 121, 7600–
rearrangement • Stille coupling
7605
[25]
[26]
A. S. Devlin, J. Du Bois, Chem. Sci. 2013, 4, 1059–1063.
Efforts to manipulate this compound, either by acidic hydrolysis or
oxidation, were unsuccessful, see: J. R. Walker, PhD thesis, Study of
Voltage-Gated Sodium Channels by Mutagenesis, Electrophysiology,
and Synthesis of Novel Toxins Including 11-Saxitoxinethanoic acid,
Stanford University, April 2014.
[1]
[2]
[3]
[4]
A. P. Thottumkara, W. H. Parsons, J. Du Bois, Angew. Chem. Int. Ed.
2014, 53, 5760–5784.
[27]
F. Beyerstedt, S. M. McElvain, J. Am. Chem. Soc. 1937, 59, 2266–
M. Wiese, P. M. D'Agostino, T. K. Mihali, M. C. Moffitt, B. A. Neilan,
2268.
Mar. Drugs 2010, 8, 2185–2211.
[28]
[29]
[30]
[31]
M. Schlosser, H.-X. Wei, Tetrahedron 1997, 53, 1735–1742.
H.-X. Wei, M. Schlosser, Tetrahedron Lett. 1996, 37, 2771–2772.
Yield determined by 1H NMR integration against an internal standard.
O. Arakawa, S. Nishio, T. Noguchi, Y. Shida, Y. Onoue, Toxicon 1995,
33, 1577–1584.
M. Yotsu-Yamashita, Y. H. Kim, S. C. Dudley Jr., G. Choudhary, A.
Pfahnl, Y. Oshima, J. W. Daly, Proc. Natl. Acad. Sci. USA 2004, 101,
4346–4351.
G. D. Allred, L. S. Liebeskind, J. Am. Chem. Soc. 1996, 118, 2748–
2749.
[5]
(a) J. V. Mulcahy, J. Du Bois, J. Am. Chem. Soc. 2008, 130, 12630–
12631; (b) J. V. Mulcahy, J. R. Walker, J. E. Merit, A. Whitehead, J. Du
Bois, J. Am. Chem. Soc. 2016, 138, 5994–6001; (c) O. Iwamoto, K.
Nagasawa, Org. Lett. 2010, 12, 2150–2153.
[6]
[7]
C. Wang, M. Oki, T. Nishikawa, D. Harada, M. Yotsu-Yamashita, K.
Nagasawa, Angew. Chem. Int. Ed. 2016, 55, 11600–1603.
For related studies, see: (a) H. Tanino, T. Nakata, T. Kaneko, Y. Kishi,
J. Am. Chem. Soc. 1977, 99, 2818–2819; (b) P. A. Jacobi, M. J.
Martinelli, P. Slovenko, J. Am. Chem. Soc. 1984, 106, 5594–5598; (c) J.
J. Fleming, M. D. McReynolds, J. Du Bois, J. Am. Chem. Soc. 2007,
129, 9964–9975; (d) O. Iwamoto, R. Shinohara, K. Nagasawa, Chem.
Asian. J. 2009, 4, 277–285; (e) V. R. Bhonde, R. E. Looper, J. Am.
Chem. Soc. 2011, 133, 20172–20174; (f) S. Ueno, A. Nakazaki, T.
Nishikawa, Org. Lett. 2016, 16, 6368–6371, and references therein.
[8]
[9]
D. A. Evans, G. C. Andrews, Acc. Chem. Res. 1974, 7, 147–155.
M. Koprowski, E. Krawczyk, A. Skowroñska, M. McPartlin, N. Choi, S.
Radojevic, Tetrahedron 2001, 57, 1105–1118.
[10]
S. J. Brenek, S. P. Caron, E. Chisowa, M. P. Delude, M. T. Drexler, M.
D. Ewing, R. E. Handfield, N. D. Ide, D. V. Nadkarni, J. D. Nelson, M.
Olivier, H. H. Perfect, J. E. Phillips, J. J. Teixeira, R. M. Weekly, J. P.
Zelina, Org. Process. Res. Dev. 2012, 16, 1348–1359.
[11]
[12]
[13]
[14]
A. I. Meyers, T. R. Elworthy, J. Org. Chem. 1992, 57, 4732–4740.
B. M. Trost, M. T. Rudd, Org. Lett. 2003, 5, 1467–1470.
P. Kocovsky Tetrahedron Lett. 1986, 27, 5521–5524.
H. Onodera, M. Satake, Y. Oshima, T. Yasumoto, W. W. Carmichael,
Nat. Toxins 1997, 5, 146–151.
[15]
[16]
R. Thomas-Tran, J. Du Bois, Proc. Natl. Acad. Sci. USA 2016, 113,
5856–5861.
(a) C. R. Johnson, J. P. Adams, M. P. Braun, C. B. W. Senanayake, P.
M. Wovkulich, M. R. Uskokovic, Tetrahedron Lett. 1992, 33, 917–918.
(b) E. Djuardi, P. Bovonsombat, E. Mc Nelis, Synth. Commun. 1997,
27, 2497–2503.
[17]
An alternative mechanism for formation of the α-iodinated product may
involve direct addition of 8 to an I2•pyridine complex. For related
examples, see: (a) P. J. Campos, J. Arranz, M. A. Rodríguez,
Tetrahedron Lett. 1997, 38, 8397–8400; (b) I. Papoutsis, S. Spyroudis,
This article is protected by copyright. All rights reserved.