C O M M U N I C A T I O N S
methyl-functionalized lithiosilane rac-2, which has major synthetic
potential (e.g., for nucleophilic transfer of silicon moieties).
Currently we are investigating related Si-C bond cleavage reactions
as new synthetic entry to enantiomerically enriched lithiosilanes.
Acknowledgment. This work was supported by the Institut fu¨r
Anorganische Chemie Wu¨rzburg, the DFG, the Graduiertenkolleg
690, and the FCI. D.S. thanks the FCI for a doctoral scholarship.
Supporting Information Available: Crystallographic (CIF) and
experimental details (PDF). This material is available free of charge
References
(1) (a) Tamao, K.; Kawachi, A. AdV. Organomet. Chem. 1995, 38, 1. (b)
Lickiss, P. D.; Smith, C. M. Coord. Chem. ReV. 1995, 145, 75. (c)
Sekiguchi, A.; Lee, V. Y.; Nanjo, M. Coord. Chem. ReV. 2000, 210, 11.
(2) (a) Oh, H.-S.; Park, L.-S.; Kawakami, Y. Chirality 2003, 15, 646. (b)
Uhlig, W. J. Organomet. Chem. 2003, 685, 70.
(3) (a) Kawachi, A.; Tamao, K. J. Am. Chem. Soc. 2000, 122, 1919. (b)
Strohmann, C.; Ulbrich, O.; Auer, D. Eur. J. Inorg. Chem. 2001, 1013.
(c) Auer, D.; Kaupp, M.; Strohmann, C. Organometallics 2004, 23, 3647.
(4) (a) Strohmann, C.; Ho¨rnig, J.; Auer, D. Chem. Commun. 2002, 766. (b)
Auer, D.; Ho¨rnig, J.; Strohmann, C. Organosilicon Chemistry V: From
Molecules to Materials; Auner, N., Weis, J., Eds.; Wiley-VCH: Weinheim,
Germany, 2003; p 167.
(5) (a) Fleming, I.; Roberts, R. S.; Smith, S. C. J. Chem. Soc., Perkin Trans.
1 1998, 1209. (b) Oestreich, M.; Auer, G.; Keller, M. Eur. J. Org. Chem.
2005, 184. (c) Porchia, M.; Brianese, N.; Casellato, U.; Ossola, F.;
Rossetto, G.; Zanella, P.; Graziani, R. J. Chem. Soc., Dalton Trans. 1989,
677. (d) Allred, A. L.; Smart, R. T.; Van Beek, D. A., Jr. Organometallics
1992, 11, 4225. (e) Tsuji, H.; Toshimitsu, A.; Tamao, K. Chem.
Heterocycl. Compd. 2001, 37, 1369.
(6) Ho¨rnig, J.; Auer, D.; Strohmann, C. In Organosilicon Chemistry V: From
Molecules to Materials; Auner, N., Weis, J., Eds.; Wiley-VCH: Weinheim,
Germany, 2003; p 150.
Figure 1. Molecular structure of rac-2 in the crystal; the two crystal-
lographic independent molecules (1M,1R,3M,3S)-(2‚THF)2 and (1P,1R,3P,3S)-
(2‚THF)2 are shown (Schakal plots15). Selected bond lengths (Å) and angles
(deg) of (1M,1R,3M,3S)-(2‚THF)2: Si(1)-C(1) 1.906(7), Si(1)-C(2) 1.925-
(6), Si(1)-C(8) 1.940(9), Si(2)-C(18) 1.902(7), Si(2)-C(19) 1.912(7), Si-
(2)-C(25) 1.958(6), Si(1)-Li(1) 2.933(11), Si(1)-Li(2) 2.711(11), Si(2)-
Li(1) 2.734(12), Si(2)-Li(2) 2.864(11); C(1)-Si(1)-C(2) 102.3(3), C(1)-
Si(1)-C(8) 103.0(3), C(2)-Si(1)-C(8) 101.0(3), C(18)-Si(2)-C(19)
103.8(3), C(18)-Si(2)-C(25) 99.6(3), C(19)-Si(2)-C(25) 106.2(3).
(1P,1R,3P,3S)-(2‚THF)2: Si(3)-C(35) 1.923(7), Si(3)-C(36) 1.960(6), Si-
(3)-C(42) 1.947(6), Si(4)-C(52) 1.939(7), Si(4)-C(53) 1.924(7), Si(4)-
C(59) 1.985(8), Si(3)-Li(3) 2.855(11), Si(3)-Li(4) 2.715(15), Si(4)-Li(3)
2.708(10), Si(4)-Li(4) 2.956(14), C(35)-Si(3)-C(36) 101.6(3), C(35)-
Si(3)-C(42) 99.7(3), C(36)-Si(3)-C(42) 105.1(3), C(52)-Si(4)-C(53)
105.1(3), C(52)-Si(4)-C(59) 103.0(3), C(53)-Si(4)-C(59) 101.9(3).
(7) The preparation of the dimeric silyl-substituted and THF-coordinated
lithiosilane [(Me3Si)SiLi‚THF]2 by distillation of (Me3Si)SiLi‚3THF under
reduced pressure was recently described: Nanjo, M.; Nanjo, E.; Mochida,
K. Eur. J. Inorg. Chem. 2004, 2961.
(8) (a) Lukevics, E.; Sleiksa, I.; Liepins, E.; Shats, V. D.; Zicmane, I.; Purvina,
A. Chem. Heterocycl. Compd. 1991, 27, 1319. (b) Abele, B. C.;
Strohmann, C. In Organosilicon Chemistry III: From Molecules to
Materials; Auner, N., Weis, J., Eds.; Wiley-VCH: Weinheim, Germany,
1998; p 206. (c) Strohmann, C.; Abele, B. C.; Lehmen, K.; Villafane, F.;
Sierra, L.; Martin-Barrios, S.; Schildbach, D. J. Organomet. Chem. 2002,
661, 149. (d) Schildbach, D.; Arroyo, M.; Lehmen, K.; Mart´ın-Barrios,
S.; Sierra, L.; Villafan˜e, F.; Strohmann, C. Organometallics 2004, 23,
3228.
a result of the hybridization defects14 of Si in silyl anions or highly
polar lithiosilanes [306.3° on Si(1), 309.6° on Si(2), 306.4° on Si-
(3), and 308.3° on Si(4)].
Both lithium centers are coordinated by a nitrogen atom and one
THF molecule, respectively. This leads to the formation of a ladder
framework consisting of a central Si-Li-Si-Li and two Si-Li-
N-C four-membered rings. The ligands on the Li centers in each
dimer show formally C2 symmetry (perpendicular to the central
Si-Li-Si-Li ring), while the Si centers show formal inversion
symmetry to each other. By this arrangement, in addition to the
stereogenic silicon centers, two chiral planes are formed, resulting
in four chiral elements per dimer.
(9) This change of color is also known from the reaction of chlorosilanes
under similar conditions. There it is evidence for the formation of the
corresponding lithiosilane, although it is known that the color is not of
the lithiosilane itself, but associated with traces of radical anions formed
by side reactions. See ref 5a and references therein.
(10) The methoxysilane is available by one-pot reaction from chloro(chloro-
In principle, when constructing dimeric aggregates from the
monomeric lithiosilane rac-2, 16 different isomers are imaginable,16
methyl)methylphenylsilane; cf. Supporting Information.
(11) Disilane 7 can also be prepared starting from disilane rac-1. But Si-Si
cleavage of rac-1 and reaction with rac-methoxymethylphenyl(piperidi-
nomethyl)silane results in an inseparable product mixture of rac-1 and 7.
(12) Crystallographic data for (2‚THF)2: C34H56Li2N2O2Si2, M ) 594.87,
orthorhombic, space group Pna21 (no. 33), a ) 19.777(4), b ) 10.400-
(2), c ) 35.503(7) Å, V ) 7302(3) Å3, Z ) 8, Dc ) 1.082 Mg/m3, µ )
0.127 mm-1. 42 344 reflections, 11 040 unique reflections; 7687 with I
> 2σ(I); R1 ) 0.0801 [I > 2σ(I)], wR2(Fo2) ) 0.1829 (all data), absolute
structure parameter 0.05(19). X-ray crystallography data for (2‚THF)2 has
been deposited with the Cambridge Crystallographic Data Centre as
supplementary publication no. CCDC 260574.
(13) The crystal was mounted at -60 °C (N2 stream), using the X-TEMP 2
device (Kottke, T.; Stalke, D. J. Appl. Crystallogr. 1993, 26, 615).
(14) (a) Kutzelnigg, W. Angew. Chem., Int. Ed. Engl. 1984, 23, 272. For a
recent contribution concerning hybridization defects, see: (b) Kaupp, M.;
Riedel, S. Inorg. Chim. Acta 2004, 357, 1865.
(15) Keller, E. Schakal99; University of Freiburg: Freiburg, Germany, 1999.
(16) These isomers include seven pairs of enantiomers and two meso
compounds (for a detailed representation of all isomers cf. Supporting
Information). A thorough discussion of the occurring structural motifs
was given, for example, for 2-lithiobenzylamines, where similar dimeric
aggregates are found. See: (a) Reich, H. J.; Goldenberg, W. S.;
Gudmundsson, B. O.; Sanders, A. W.; Kulicke, K. J.; Simon, K.; Guzei,
I. A. J. Am. Chem. Soc. 2001, 123, 8067 and references therein. (b) Arink,
A. M.; Kronenburg, C. M. P.; Jastrzebski, J. T. B. H.; Lutz, M.; Spek, A.
L.; Gossage, R. A.; Van Koten, G. J. Am. Chem. Soc. 2004, 126, 16249
and references therein.
1
two enantiomers of which were found in the solid state. H, 13C,
and 29Si NMR analyses at -40 °C in toluene-d8 (sample prepared
by dissolving crystals of rac-2) indicate the existence of more than
one isomer in solution. However, no further classification of these
structures was possible. In THF-d8, the situation is simplified as
the observation of a 29Si-7Li coupling at -70 °C (quartet; 1JSiLi
)
48.9 Hz) in the 29Si NMR spectrum clearly supports the existence
of monomeric lithiosilane rac-2.
Although the solid-state structure concerns the racemic lithio-
silane rac-2, one can also expect a dimeric molecular structure for
the enantiomerically pure compound 2. We further emphasize that
this molecular structure has to be different from the structure found
for the racemic lithiosilane rac-2, as each dimer observed in the
crystal structure consists of one (R)- and one (S)-configured unit.
To avoid possible stereochemical problems, all reactions involving
the enantiomerically enriched lithiosilane 2 should be performed
in THF solution.
Starting from simple compound 4, an unanticipated and novel
Si-C bond cleavage reaction permits preparation of the amino-
JA050360S
9
J. AM. CHEM. SOC. VOL. 127, NO. 22, 2005 7969