R. J. M. Klein Gebbink, G. van Koten et al.
FULL PAPER
room temperature. The colorless solution was concentrated in
vacuo, and the crude product was washed with hexanes (40 mL) to
1.69 (m, 12 H, OCH2CH2), 1.25 (m, 108 H, 9ϫCH2), 0.89 (m, 18
H, CH3) ppm. 13C{1H} NMR (300 MHz, CD2Cl2, 25 °C): δ =
154.0, 153.3, 148.2, 144.1, 140.4, 135.7, 129.5, 127.2, 125.7, 122.5,
1
give [4]Br as a white powder (250 mg, 0.29 mmol, 71%). H NMR
3
(200 MHz, CD2Cl2, 25 °C): δ = 7.64 [d, JH,H = 7.8 Hz, 2 H, 122.4, 111.9, 100.6, 73.9, 69.8, 49.3, 40.6, 32.5, 30.9, 30.4, 30.3,
ArH(core)], 7.46 [m, 3 H, ArH(core)], 6.84 [s, 2 H, ArH(wedge)],
30.2, 30.1, 30.0, 26.8, 26.7, 23.3, 14.5 ppm. ESI-MS: m/z = 2429.8
5.01 [s, 2 H, NCH2(shell)], 4.96 (s, 2 H, CH2N), 3.99 (br. signal, 6 (2429.9 calcd. for [[3][MO] + CH3C6H2(OC12H25)3]+), 1784.4
H, OCH2), 3.09 [s, 6 H, N(CH3)2], 1.75 (m, 6 H, OCH2CH2), 1.48 (1784.8 calcd. for [[3][MO]]+), 836.8 (836.4 calcd. for [[3] –
3
(m, 6 H, OCH2CH2CH2), 1.27 (m, 48 H, 8ϫCH2), 0.88 (t, JH,H
= 6.6 Hz, 9 H, CH3) ppm. 13C{1H} NMR (300 MHz, CDCl3,
25 °C): δ = 153.3, 140.0, 133.3, 130.5, 129.0, 127.4, 111.8, 73.4,
69.5, 68.2, 67.3, 48.2, 31.8, 30.3, 29.7, 29.6, 29.6, 29.4, 29.3, 26.1,
26.0, 22.6, 14.0 ppm. ESI-MS: m/z = 1637.77 (1638.49 calcd. for
[2ϫ[4]Br – Br]+), 779.29 (779.19 calcd. for [4]+). C52H92BrNO3
(859.20): calcd. C 72.69, H 10.79, Br 9.30, N 1.63; found C 72.78,
H 10.67, Br 9.42, N 1.54.
CH2C6H2(OC12H25)3]+), 740.1 (740.2 calcd. for [3]2+), 644.6 (644.1
calcd. for [CH2C6H2(OC12H25)3]+).
1
3
[4][MO]: H NMR (300 MHz, CD2Cl2, 25 °C): δ = 7.97 [d, JH,H
3
= 9.0 Hz, 2 H, ArH(MO)], 7.85 [d, JH,H = 9.3 Hz, 2 H,
ArH(MO)], 7.79 [d, 3JH,H = 8.7 Hz, 2 H, ArH(MO)], 7.56 [m, 2 H,
ArH(core)], 7.48 [m, 3 H, ArH(core)], 6.81 [s, 2 H, ArH(wedge)],
6.76 [d, 3JH,H = 9.3 Hz, 2 H, ArH(MO)], 4.82 [s, 2 H, NCH2(shell)],
4.81 (s, 2 H, CH2N), 3.92 (m, 6 H, OCH2), 3.08 [s, 6 H, N(CH3)2
(MO)], 3.01 [s, 6 H, N(CH3)2], 1.72 (m, 6 H, OCH2CH2), 1.43 (m,
6 H, OCH2CH2CH2), 1.25 (m, 48 H, 8ϫCH2), 0.86 (m, 9 H, CH3)
ppm. 13C{1H} NMR (300 MHz, CD2Cl2, 25 °C): δ = 154.0, 153.4,
148.5, 144.1, 140.3, 133.9, 131.1, 129.7, 128.2, 127.3, 125.6, 122.7,
122.4, 112.1, 112.0, 73.9, 69.9, 69.5, 68.5, 48.8, 40.6, 32.5, 30.9,
30.3, 30.2, 30.1, 30.0, 26.8, 26.7, 23.3, 14.5 ppm. ESI-MS: m/z =
1861.69 (1862.93 calcd. for [2ϫ[4][MO] – MO]+), 779.15 (779.29
calcd. for [4]+).
General Preparation and Characterization of Dendritic MO As-
semblies: A solution of methyl orange (Na[MO]; 43 mg, 151 µmol,
4.5 equiv.) in deionized water (25 mL) was added to a solution of
[2]Br4 (100 mg, 29 µmol) in dichloromethane (25 mL) and the mix-
ture was vigorously stirred overnight at room temperature. The
orange–colored dichloromethane layer was separated off and
washed with deionized water. The organic layer was then dried with
Na2SO4 and concentrated in vacuo. The red solid [2][MO]4 was
isolated in 87% yield (110 mg, 25.2 µmol). From the 1H NMR
spectrum, the amount of MO anions in the assemblies was calcu-
lated by using specific signal integration (see Table 1).
Acknowledgments
[1][MO]8: 1H NMR (300 MHz, CD2Cl2, 25 °C): δ = 8.85 [s, 8 H,
3
Financial support was obtained from the National Research School
Combination-Catalysis (R. J. M. K.).
ArH(core)], 8.75 [s, 4 H, ArH(core)], 7.83 [d, JH,H = 8.1 Hz, 16
3
H, ArH(MO)], 7.82 [d, JH,H = 9.3 Hz, 16 H, ArH(MO)], 7.75 [d,
3
3JH,H = 8.1 Hz, 16 H, ArH(MO)], 6.71 [d, JH,H = 9.3 Hz, 16 H,
ArH(MO)], 6.66 [s, 16 H, ArH(wedge)], 4.78 [s, 16 H, NCH2(shell)],
4.53 (s, 16 H, CH2N), 3.74 (t, 16 H, OCH2), 3.64 (t, 32 H, OCH2),
3.05 [s, 48 H, N(CH3)2 (MO)], 2.92 [s, 48 H, N(CH3)2], 1.54 (m, 48
H, OCH2CH2), 1.23 (m, 432 H, 9ϫCH2), 0.86 (m, 72 H, CH3)
[1] a) V. Balzani, F. Vögtle, C R. Chimie 2003, 6, 867–872; b) A.
Dirksen, L. De Cola, C R. Chimie 2003, 6, 873–882; c) M. Ven-
turi, S. Serroni, A. Juris, S. Campagna, V. Balzani, Top. Curr.
Chem. 1998, 197, 193–228.
ppm. 13C{1H} NMR (300 MHz, CD2Cl2, 25 °C): δ = 154.0, 153.9, [2] a) D. Astruc, F. Lu, J. R. Aranzaes, Angew. Chem. Int. Ed.
2005, 44, 7852–7872; b) R. M. Crooks, B. I. Lemon III, L. Sun,
L. K. Yeung, M. Zhao, Top. Curr. Chem. 2001, 212, 81–135; c)
R. W. J. Scott, O. M. Wilson, R. M. Crooks, J. Phys. Chem. B
2005, 109, 692–704.
153.3, 148.5, 144.1, 140.3, 129.7, 127.1, 125.7, 122.6, 111.9, 74.0,
69.9, 49.4, 40.6, 32.6, 32.5, 31.0, 30.1, 30.0, 26.9, 26.7, 23.3,
14.5 ppm. ESI-MS: m/z = 2487.6 (2489.22 calcd. for [[1][MO]5]3+),
1790.25 (1790.83 calcd. for [[1][MO]4]4+), 1950.77 (1952.11 calcd.
for [[1][MO]4 + CH3C6H2(OC12H25)3]4+), 606.87 (608.69 calcd. for
[[MO]2]+), 301.91 (304.35 calcd. for [MO]+).
[3] a) D. Astruc, F. Chardac, Chem. Rev. 2001, 101, 2991–3024; b)
P. A. Chase, R. J. M. Klein Gebbink, G. van Koten, J. Or-
ganomet. Chem. 2004, 689, 4016–4054; c) R. Kreiter, A. W.
Kleij, R. J. M. Klein Gebbink, G. van Koten, Top. Curr. Chem.
2001, 217, 163–199; d) R. van Heerbeek, P. C. J. Kamer,
P. W. M. N. van Leeuwen, J. N. H. Reek, Chem. Rev. 2002, 102,
3717–3756.
1
3
[2][MO]4: H NMR (300 MHz, CD2Cl2, 25 °C): δ = 7.99 [d, JH,H
= 8.4 Hz, 8 H, ArH(MO)], 7.81 [d, 3JH,H = 9.0 Hz, 16 H, ArH(MO)
and ArH(core)], 7.77 [d, 3JH,H = 8.7 Hz, 8 H, ArH(MO)], 7.26 [br.
3
signal, 8 H, ArH(core)], 6.72 [d, JH,H = 9.0 Hz, 8 H, ArH(MO)],
[4] M. W. P. L. Baars, E. W. Meijer, Top. Curr. Chem. 2000, 210,
6.68 [s, 8 H, ArH(wedge)], 5.15 (s, 8 H, NCH2), 4.71 (s, 8 H,
CH2N), 3.84 (t, 8 H, OCH2), 3.74 (t, 16 H, OCH2), 3.05 [s, 24 H,
N(CH3)2 (MO)], 2.97 [s, 24 H, N(CH3)2], 1.62 (m, 24 H,
OCH2CH2), 1.22 (m, 216 H, 9ϫCH2), 0.86 (m, 36 H, CH3) ppm.
13C{1H} NMR (300 MHz, CD2Cl2, 25 °C): δ = 153.9, 153.8, 153.2,
148.3, 143.9, 140.1, 137.3, 133.9, 130.5, 127.1, 125.6, 122.7, 122.5,
111.9, 73.9, 69.7, 48.4, 40.6, 32.5, 30.9, 30.4, 30.3, 30.2, 30.0, 26.9,
26.7, 23.3, 14.5 ppm. ESI-MS: m/z = 1874.9 (1875.0 calcd. for
[[2][MO]2]2+), 1148.6 (1148.5 calcd. for [[2][MO]]3+), 785.4 (785.3
calcd. for [2]4+).
131–182.
[5] See, for example: a) V. Balzani, H. Bandmann, P. Ceroni, C.
Giansante, U. Hahn, F. G. Klärner, U. Müller, W. M. Müller,
C. Verhaelen, V. Vicinelli, F. Vögtle, J. Am. Chem. Soc. 2006,
128, 637–648; b) M. A. C. Broeren, B. F. M. de Waal, M. H. P.
van Genderen, H. M. H. F. Sanders, G. Fytas, E. W. Meijer, J.
Am. Chem. Soc. 2005, 127, 10334–10343; c) V. Chechik, M.
Zhao, R. M. Crooks, J. Am. Chem. Soc. 1999, 121, 4910–4911;
d) D. de Groot, B. F. M. de Waal, J. N. H. Reek, A. P. H. J.
Schenning, P. C. J. Kamer, E. W. Meijer, P. W. M. N.
van Leeuwen, J. Am. Chem. Soc. 2001, 123, 8453–8458; e) C.
Valério, E. Alonso, J. Ruiz, J.-C. Blais, D. Astruc, Angew.
Chem. Int. Ed. 1999, 38, 1747–1751; f) T. Yamaguchi, N. Ishii,
K. Tashiro, T. Aida, J. Am. Chem. Soc. 2003, 125, 13934–
13935.
[3][MO]2: 1H NMR (300 MHz, CD2Cl2, 25 °C): δ = 8.51 [s, 1 H,
ArH(core)], 7.95 [d, 3JH,H = 8.1 Hz, 4 H, ArH(MO)], 7.86 [d, 3JH,H
3
= 9.3 Hz, 4 H, ArH(MO)], 7.81 [d, JH,H = 8.4 Hz, 4 H,
ArH(MO)], 7.52 [t, 3JH,H = 7.6 Hz, 3 H, Ar-H(core)], 6.77 [d, 3JH,H
= 9.0 Hz, 4 H, ArH(MO)], 6.73 [s, 4 H, ArH(wedge)], 4.95 [s, 4 H,
NCH2(shell)], 4.71 (s, 4 H, CH2N), 3.91 (t, 4 H, OCH2), 3.84 (t, 8
H, OCH2), 3.10 [s, 12 H, N(CH3)2(MO)], 3.07 [s, 12 H, N(CH3)2],
[6] C. N. Moorefield, G. R. Newkome, C R. Chimie 2003, 6, 715–
724.
[7] J. F. G. A. Jansen, E. M. M. de Brabander-van den Berg, E. W.
Meijer, Science 1994, 266, 1226–1229.
2938
www.eurjoc.org
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2007, 2931–2939