tional groups include thiourea, thioether, and urea which were
employed for the extraction of metal ions from aqueous
9
9a,10
11
2c
2a
solutions, amines,
amides, phosphines, nitriles, and
8
,12
alkynes. Recently, metal complexes with pending imida-
2b,13
zolium tags have also been reported.
These incorporated
functional groups are sometimes play a role in the reaction.
Herein, we report a new type of ionic liquid-coordinated
palladium complex for the Heck reaction. This catalytic ionic
liquid solution can be recovered and recycled without
significant loss in activity.
In some molecules with multiple centers available for
quaternization, such as 4,4′-bipyridine, a coordination center
remains after monoquaternization. In our earlier work, it was
shown that the monoquaternary products of 4,4′-bipyridine
are not room temperature ionic liquids although they are
relatively low melting salts, 52-109 °C.14 We now have
Figure 1. Single-crystal X-ray structure of 4. Compound 4
crystallizes in the triclinic space group P-1 with the Pd atom on
the inversion center. The other half of the molecule and the extra
anion for charge balance are symmetry generated. The bi-imidazole
ligands are oriented trans to each other, and they are tilted out of
the PdCl
2
plane by 53.4°. There is also a twist between the two
imidazole rings of 68°. Both tilting and twisting are seen in other
17
18
2
imidazole-PdCl complexes and bi-imidazole systems. In this
case, the tilt is relatively large, probably due to the steric influence
of the Bu arms. These pendant Bu arms wrap around the Cl atoms
extended our research to 2,2′-biimidazole, 1, which was
prepared from glyoxal and ammonium acetate.15 Treatment
2
and encapsulate the PdCl group in a hydrocarbon shell. This may
have some bearing on the catalyst recovery rate seen for 4 in the
of 1 with 1-iodobutane in the presence of base leads readily
to 1,1′-dibutyl-2,2′-biimidazole, 2.16 Reaction with 1 equiv
of 1-iodobutane at 100 °C quaternizes one of the two basic
nitrogens of 2 to give the monoquaternary salt. Subsequent
metathetical reaction with potassium hexafluorophosphate
resulted in the formation of 3 (95% yield), which can be
classified as a room-temperature ionic liquid with a glass
transition temperature of -42.76 °C (Scheme 1).
Heck reaction (vide infra).
and is completely soluble in the coordinating ligandsionic
liquid 3. We believe that this is the first example of a
complex formed between an ionic liquid with more than one
center available for quaternization and a transition metal.
The palladium-catalyzed coupling of olefins with aryl or
vinyl halides, known as the Heck reaction, is one of the most
important, reliable, and general reactions for carbon-carbon
19
bond formation in organic synthesis. Various strategies are
Scheme 1. Synthesis of Complex 4
(
6) (a) Mathews, C. J.; Smith, P. J.; Welton, T. Chem. Commun. 2000,
1
1
249-1250. (b) Xu, L.; Chen, W.; Xiao, J. Organometallics 2000, 19,
123-1127. (c) Mathews, C. J.; Smith, P. J.; Welton, T.; White, A. J. P.;
Williams, D. J. Organometallics 2001, 20, 3848-3850. (d) Carmichael,
A. J.; Earle, M. J.; Holbrey, J. D.; McCormac, P. B.; Seddon, K. R. Org.
Lett. 1999, 1, 997-1000. (e) Handy, S. T.; Zhang, X. Org. Lett. 2001, 3,
2
33-236.
(7) (a) Dupont, J.; Silva, S. M.; de Souza, R. F. Catal. Lett. 2001, 77,
1
31-133. (b) Wasserscheid, P.; Waffenschmidt, H.; Machnitzki, P.;
Kottsieper, K. W.; Stelzer, O. Chem. Commun. 2001, 451-452.
(
8) Fei, Z.; Zhao, D.; Scopelliti, R.; Dyson, P. J. Organometallics 2004,
3, 1622-1628.
9) (a) Visser, A. E.; Swatloski, R. P.; Reichert, W. M.; Davis, J. H.,
Jr.; Rogers, R. D.; Mayton, R.; Sheff, S.; Wierzbicki, A. Chem. Commun.
2
(
2
001, 135-136. (b) Visser, A. E.; Swatloski, R. P.; Reichert, W. M.;
Mayton, R.; Sheff, S.; Wierzbicki, A.; Davis, J. H., Jr.; Rogers, R. D.
EnViron. Sci. Technol. 2002, 36, 2523-2529.
(10) Bates, E. D.; Mayton, R. D.; Ntai, I.; Davis, J. H., Jr. J. Am. Chem.
Soc. 2002, 124, 926-927.
11) Lee, K.-M.; Lee, Y.-T.; Lin, I. J. B. J. Mater. Chem. 2003, 13,
079-1084.
12) Schottenberger, H.; Wurst, K.; Horvath, U. E. I.; Cronje, S.;
Lukasser, J.; Polin, J.; McKenzie, J. M.; Raubenheimer, H. G. Dalton Trans.
(
1
(
2
003, 4275-4281.
(
13) (a) Geldbach, T. J.; Dyson, P. J. J. Am. Chem. Soc. 2004, 126, 8114-
8
115. (b) Yao, Q.; Zhang, Y. Angew. Chem., Int. Ed. Engl. 2003, 42, 3395-
3
398.
(
14) (a) Singh, R. P.; Shreeve, J. M. Inorg. Chem. 2003, 42, 7416-
7
3
421. (b) Singh, R. P.; Shreeve, J. M. Chem. Commun. 2003, 1366-1367.
(15) Cho, J. R.; Cho, S. G.; Goh, E. M.; Kim, J. K. FR2838440.
(
16) Thummel, R. P.; Goulle, V.; Chen, B. J. Org. Chem. 1989, 54,
057-3061.
The coordination ability of 3 was then tested. Dissolution
of PdCl in 2 equiv of 3 in methanol for 6 h at room
2
temperature afforded a yellow palladium complex, 4, in 90%
yield. A crystal suitable for X-ray single-crystal diffraction
(17) See, e.g.: (a) Ianellai, S.; Pelizzi, G.; Vitali, F.; Devoto, G.;
Massacesi, M.; Ponticelli, G. J. Crystallogr. Spectrosc. Res. 1985, 15, 351-
3
58. (b) Navarro-Ranninger, M. C.; Martinez-Carrera, S.; Garcia-Blanco,
S. Acta Crystallogr. 1983, C39, 186-188. (c) Lee, C. K.; Ling, M. J.; Lin,
I. J. B, Dalton Trans. 2003, 4731-4737.
(18) See, e.g.: (a) Ono, K.; Saito, K.; Uchiumi, H.; Tomurra, M. Chem.
3 2 5 2
analysis was obtained from a 1:3 CH OH/(C H ) O mixture
Lett. 2002, 622-623. (b) Lemke, M.; Knoch, F.; Kisch, H.; Salbeck, J.
Chem. Ber. 1995, 128, 131-136.
(
Figure 1). This complex is insensitive to oxygen or moisture
3846
Org. Lett., Vol. 6, No. 21, 2004