T. Caruso, E. Vasca / Electrochemistry Communications 12 (2010) 1149–1153
1153
(
(
(
e) G.W. Huber, S. Iborra, A. Corma, Chem. Rev. 106 (2006) 4044;
f) J.N. Chheda, J.A. Dumesic, Catal. Today 123 (2007) 59;
g) G.W. Huber, J.N. Chheda, C.J. Barrett, J.A. Dumesic, Science 308 (2005) 1446.
(
(
0.08 F/mol) to convert more than 90% fructose to HMF and for 80 min
0.15 F/mol) to obtain the same result for sucrose. Sucrose dehydra-
tion according to reaction (5)
[2] (a) G. Yong, Y. Zhang, J.Y. Ying, Angew. Chem. Int. Ed. 47 (2008) 9345;
(
b) S. Hu, Z. Zhang, Y. Zhou, B. Han, H. Fan, W. Li, J. Song, Y. Xie, Green Chem. 10
þ
(2008) 1283;
H
C12H22O11 → C H12O6 + C H O + 2H O
ð5Þ
(c) J.N. Chheda, Y. Roman-Leshkov, J.A. Dumesic, Green Chem. 9 (2007) 342;
d) H. Zhao, J.E. Holladay, H. Brown, Z.C. Zhang, Science 316 (2007) 1597;
(e) J.Y.G. Chan, Y. Zhang, Chem. Sus. Chem. 2 (2009) 731;
f) A. Takagaki, M. Ohara, S. Nishimura, K. Ebitani, Chem. Comm. (2009) 6276.
6
6
6
3
2
(
is catalysed by H+ ions. After the glycosidic bond cleavage, with
formation of glucose and of a five-member cyclic carboxonium ion
(
[
[
[
3] (a) F.W. Lichtenthaler, Acc. Chem. Res. 35 (2002) 728;
(b) J.O. Metzger, Angew. Chem. Int. Ed. 45 (2006) 696.
4] (a) B.M.F. Kuster, Starch/Staerke 42 (1990) 314;
+
[
14,19]; this fructosyl intermediate loses H , forming an enol
intermediate [18] which finally dehydrates to HMF. The electrochem-
ically-catalysed dehydration of sucrose is expressed by reaction (6),
resulting from the sum of (1) with (5):
(
b) G.A. Halliday, R.J. Young, V.V. Grushin, Org. Lett. 5 (2003) 2003.
5] (a) K. Seri, Y. Inoue, H. Ishida, Bull. Chem. Soc. Jpn 74 (2001) 1145;
(b) M.J. Antal Jr., W.S.L. Mok, G.N. Richards, Carbohydr. Res. 199 (1990) 111;
(
c) F.S. Asghari, H. Yoshida, Ind. Eng. Chem. Res. 45 (2006) 2163;
(d) F. Ilgen, D. Ott, D. Kralish, C. Reil, A. Palmberger, B. König, Green Chem. 11
2009) 1948;
þ
H
þ
−
C12H22O11 + ðCH Þ SO → C H12O6 + C H O + ðCH Þ SO + H O + 2H +2e
:
3
2
6
6
6
3
3
2
2
2
(
ð6Þ
(e) W. Zeng, D. Cheng, F. Chen, X. Zhan Catal. Lett. 133 (2009) 221.
6] (a) K. Seri, Y. Inoue, H. Ishida, Chem. Lett. (2000) 22;
[
[
(b) Y. Nakamura, S. Morikawa, Bull. Chem. Soc. Jpn 53 (1980) 3705.
+
Formation of trace amounts of H during the electrolysis was
7] C. Moreau, R. Durand, S. Razigade, J. Duhamet, P. Faugeras, P. Rivalier, P. Ros, G.
Avignon, Appl. Catal. A 145 (1996) 211.
1
confirmed by H-NMR on the basis of ring opening of propylene oxide
to 1,2-propanediol, (Fig. 3b) [20]. Accordingly, in the presence of
known amounts of pyridine (2%v/v) or imidazole (3 mM) or by
[
[
8] M. Bicker, D. Kaiser, L. Ott, H. Vogel, J. Supercrit. Fluids. 36 (2005) 118.
9] (a) X. Qi, M. Watanabe, T.M. Aida, R.L. Smith, Jr. Green Chem. 11 (2009) 1327;
(
b) C. Moreau, A. Finiels, L. Vanoye, J. Mol. Catal. Chem. 253 (2006) 165;
(c) S. Hu, Z. Zhang, J. Song, Y. Zhou, B. Han Green Chem. 11 (2009) 1746.
10] (a) X. Qi, M. Watanabe, T.M. Aida, R.L. Smith, Jr Ind. Eng. Chem. Res. 47 (2008)
234;
b) Y. Roman-Leshkov, J.N. Chheda, J.A. Dumesic, Science 312 (2006) 1933.
[11] (a) S.J. Yao, A.J. Appleby, A. Geisel, H. Cash, S. K. Wolfson Nature 224 (1969) 921;
saturating the solution with Na
Furthermore, sucrose and fructose were recovered unchanged in
anhydrous conditions (DMSO distilled over CaH under nitrogen and
2 3
CO no reaction was observed.
[
9
2
(
used over activated molecular sieves, 4 Å). Finally, no reaction
occurred using as the substrate sucrose octaacetate, which cannot
dehydrate.
(
(
b) P. Parpot, K.B. Kokoh, B. Beden, C. Lamy, Electr. Acta 38 (1993) 1679;
c) P. Parpot, K.B. Kokoh, E.M. Belgsir, J.-M. Leger, B. Beden, C. Lamy J. Appl. Electr.
27 (1997) 25.
[
12] G.W. Hay, F. Smith, Canad. J. Chem. 47 (1969) 417.
4
. Conclusions
[13] (a) S. Torii, Electroorganic Synthesis, Part I, Oxidation Methods, Applications
Verlag Chemie, Weinheim, 1985, pp. 188–192;
(
b) S. Torii, Bull. Soc. Chem. Jpn. 58 (1985) 1859.
It has been demonstrated that 5-hydroxymethylfurfural can be
[
14] (a) S.J. Angyal, Angew. Chem. Int. Ed. 8 (1969) 157;
(b) S.J. Angyal, Carbohydr. Res. 263 (1994) 149;
easily synthesized with 80–85% yields in DMSO as the solvent, starting
from sucrose or fructose, at room temperature, by in situ electro-
generated acid as catalyst. The synthesis can be performed by means
of constant-current electrolysis, using milder conditions than those
usually reported.
(
(
c) V. Mazzoni, P. Bradesi, F. Tomi, J. Casanova, Magn. Res. Chem. 35 (1997) S81;
d) F.W. Lichtenthaler, S. Rönninger, J. Chem. Soc. Perkin Trans. 2 (1990) 1489.
[
15] T.J. Mega, R.L. Van Etten, J. Am. Chem. Soc. 110 (1988) 6372.
[16] G. Fleche, A. Gaset, U.S. Patent No. 4,339,387, July 13, 1982.
17] D. Vasudevan, S.S. Vaghela, G. Ramachandraiah, J. Appl. Electr. 30 (2000) 1299.
18] M.J. Antal Jr., W.S. Mok, G.N. Richards, Carbohydr. Res. 199 (1990) 91.
19] S.M. Oon, D.G. Kubler, J. Org. Chem. 47 (1982) 1166.
[
[
[
References
[20] (a) M. K. Dhaon, U.S. Patent No. 5,698,676, Use of propylene oxide as an acid
scavenger in peptide synthesis, December 16, 1997;
[
1] (a) Y. Román-Leshkov, C.J. Barret, Z.Y. Liu, J.A. Dumesic, Nature 447 (2007) 982;
(b) A.E. Gash, T.M. Tillotson, J.H. Satcher Jr, J.F. Poco, L.W. Hrubesh, R.L. Simpson,
Chem. Mater 13 (2001) 999.
(
(
b) J.N. Chheda, G.W. Huber, J.A. Dumesic, Angew. Chem. Int. Ed 46 (2007) 7164;
d) B. Kamm, Angew. Chem. Int. Ed. 46 (2007) 5056;