Palladium Catalyst Supported on a Rasta Resin
[2]
a) L. Pu, Chem. Rev. 1998, 98, 2405 and references cited
therein; b) J. L. Schulte, S. Laschat, V. Vill, E. Nishikawa, H.
Finkelmann, M. Nimtz, Eur. J. Org. Chem. 1998, 2499.
L. F. Tietze, G. Kettschau, U. Heuschert, G. Nordmann, Chem.
Eur. J. 2001, 7, 368.
the catalyst since some batches of catalyst were almost de-
void of these aggregates. The nature of the support pre-
cluded the use of other, more powerful, methods of struc-
tural elucidation such as those that we had used on graphite
surfaces.[25]
[3]
[4]
[5]
A. C. Spivey, T. Fekner, S. E. Spey, Eur. J. Org. Chem. 2000,
65, 3154.
Various biaryls were then prepared under the best reac-
tion conditions (Table 3). The couplings of 4-bromoace-
tophenone with arylboronic acids bearing an electron-do-
nating or an electron-withdrawing group proceeded in good
yields (Entries 1–4). Similar results were obtained in the re-
action of phenylboronic acid with electron-rich or electron-
deficient aryl bromides (Entries 5–13). Remarkably, the
coupling of phenylboronic acid with the sterically hindered
2-bromobiphenyl, 1-bromo-2,4,6-trimethylbenzene or 1-
bromo-2,4,6-triisopropylbenzene afforded the correspond-
ing biaryls (Entries 11–13). However, the reaction of 4-bro-
moacetophenone with (2,6-dimethoxyphenyl)boronic acid
or the reaction of 1-bromo-2,4,6-trimethylbenzene with (2-
methoxyphenyl)boronic acid gave the corresponding biaryl
in Ͻ 20% yields.
a) F. Diederich, P. J. Stang in Metal-Catalyzed Cross-Coupling
Reactions, Wiley-VCH, Weinheim, 1998; b) J. Tsuji in Palla-
dium Reagents and Catalysts: New Perspectives for the 21st Cen-
tury, John Wiley and Sons Ltd, New York, 2004.
J.-P. Corbet, G. Mignani, Chem. Rev. 2006, 106, 2651.
a) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457; b) J.
Hassan, M. Sévignon, C. Gozzi, E. Schulz, M. Lemaire, Chem.
Rev. 2002, 102, 1359.
Other powerful transition metal catalyzed synthetic methods
for the preparation of biaryls are available: a) for Cu-catalyzed
cross-coupling reactions, see: P. E. Fanta, Synthesis 1974, 9; b)
for Ni-catalyzed cross-coupling reactions, see: C.-C. Lee, W.-C.
Ke, K. T. Chan, C.-L. Lai, C.-H. Hu, H. M. Lee, Chem. Eur. J.
2007, 13, 582 and references cited therein; c) for C–H activation
reactions, see: D. Alberico, M. E. Scott, M. Lautens, Chem.
Rev. 2007, 107, 174; d) for decarboxylative Pd-catalyzed reac-
tions, see: J.-M. Becht, C. Catala, C. Le Drian, A. Wagner, Org.
Lett. 2007, 9, 1781; e) J.-M. Becht, C. Le Drian, Org. Lett.
2008, 10, 3161.
[6]
[7]
[8]
[9]
a) C. E. Garrett, K. Prasad, Adv. Synth. Catal. 2004, 346, 889;
b) C. J. Welch, J. Albaneze-Walker, W. R. Leonard, M. Biba, J.
DaSilva, D. Henderson, B. Laing, D. J. Mathre, S. Spencer, X.
Bu, T. Wang, Org. Process Res. Dev. 2005, 9, 198.
Conclusions
An efficient palladium catalyst supported on a rasta resin
and its versatile application for the preparation of biaryls
has been described. The catalyst 2 is more efficient than the
commercially available palladium EnCat TPP30 and NP30.
It was reused successfully up to five times, and the palla-
dium leaching was very low satisfying therefore the preser-
vation of scarce and expensive precious metals.
[10]
a) D. E. De Vos, M. Dams, B. F. Sels, P. A. Jacobs, Chem. Rev.
2002, 102, 3615; b) B. M. Choudary, S. Madhi, N. S. Chowdari,
M. L. Kantam, B. Sreedhar, J. Am. Chem. Soc. 2002, 124,
14127; c) K. Mori, T. Yamaguchi, T. Hara, T. Mizukagi, K.
Ebitani, K. Kaneda, J. Am. Chem. Soc. 2002, 124, 11572; d)
H. Bulut, L. Artok, S. Yilmaz, Tetrahedron Lett. 2003, 44, 289;
e) K. I. Shimizu, T. Kan-no, T. Kodama, H. Hagiwara, Y. Ki-
tayama, Tetrahedron Lett. 2002, 43, 5653; f) C. Baleizao, A.
Corma, H. Garcia, A. Leyva, Chem. Commun. 2003, 606; g)
R. Sayah, K. Glegola, E. Framery, V. Dufaud, Adv. Synth. Ca-
tal. 2007, 349, 373; h) M. Trilla, R. Pleixats, M.
Wong Chi Man, C. Bied, J. J. E. Moreau, Adv. Synth. Catal.
2008, 350, 577.
Magnetically recoverable reusable palladium catalysts sup-
ported on inorganic nanoparticles have been developed re-
cently: V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M.
Bouhrara, J.-M. Basset, Chem. Rev. 2011, 111, 3036 and refer-
ences cited therein.
a) N. E. Leadbeater, M. Marco, Chem. Rev. 2002, 102, 3217;
b) C. McNamara, M. J. Dixon, M. Bradley, Chem. Rev. 2002,
102, 3275; c) T. J. Dickerson, N. N. Reed, K. D. Janda, Chem.
Rev. 2002, 102, 3325; d) D. E. Bergbreiter, Chem. Rev. 2002,
102, 3345; e) J. Lu, P. H. Toy, Chem. Rev. 2009, 109, 815; f)
M. Lamblin, L. Nassar-Hardy, J.-C. Hierso, E. Fouquet, F.-X.
Felpin, Adv. Synth. Catal. 2010, 352, 33.
The palladium catalyst can be bound to polymer-supported
carbenes: a) J.-H. Kim, J.-W. Kim, M. Shokouhimehr, Y.-S.
Lee, J. Org. Chem. 2005, 70, 6714; b) J.-W. Byun, Y.-S. Lee,
Tetrahedron Lett. 2004, 45, 1837; c) M. Shokouhimehr, J.-H.
Kim, Y.-S. Lee, Synlett 2006, 4, 618; d) W. J. Sommer, M.
Weck, Adv. Synth. Catal. 2006, 348, 2101.
The palladium catalyst can be bound to polymer-supported
phosphanes: a) C.-M. Andersson, K. Karabelas, A. Hallberg,
J. Org. Chem. 1985, 50, 3891; b) N. Riegel, C. Darcel, O.
Stéphan, S. Jugé, J. Organomet. Chem. 1998, 567, 219; c) Y.
Uozomi, H. Danjo, T. Hayashi, J. Org. Chem. 1999, 64, 3384;
d) A. Dahan, M. Portnoy, Org. Lett. 2003, 5, 1197; e) Y. Uo-
zomi, T. Kimura, Synlett 2002, 2045; f) Y. M. Yamada, K.
Takeda, H. Takahashi, S. Ikegami, J. Org. Chem. 2003, 68,
7733; g) T. Kang, Q. Feng, M. Luo, Synlett 2005, 15, 2305; h)
Experimental Section
Catalyst 2 (4.4 mg, 0.25 milli-equiv. of supported Pd) was added to
a solution of aryl bromide (0.50 mmol, 1.0 equiv.), arylboronic acid
(0.55 mmol, 1.1 equiv.), K3PO4·H2O (138 mg, 0.60 mmol,
1.2 equiv.) in a mixture of toluene (2 mL) and H2O (20 μL). The
reaction mixture was heated at 100 °C for 90 min. After cooling to
room temp., 2 was filtered under vacuum on a 0.2 μm membrane.
The catalyst was washed with AcOEt (3ϫ10 mL). The combined
organic phases were washed with H2O (20 mL), dried with MgSO4,
filtered and concentrated under vacuum. The residue was purified
by flash chromatography on silica gel to afford pure biaryls after
drying under vacuum.
[11]
[12]
Supporting Information (see footnote on the first page of this arti-
1
cle): H NMR spectroscopic data of compounds 3a–m and copies
1
of the H NMR spectra.
[13]
[14]
Acknowledgments
We are grateful to the Centre National de la Recherche Scientifique
(CNRS) and the Research Grants Council of the Hong Kong S. A.
R., P. R. of China (Project No. 704108P) for financial support, to
Dr. Didier Le Nouën (EA 4566) for H NMR spectra, to Dr. Loïc
Vidal (LRC-CNRS 7228) for TEM images and to Amélie Kowal-
czyk for helpful technical assistance.
1
[1] P. Lloyd-Williams, E. Giralt, Chem. Soc. Rev. 2001, 30, 145 and
references cited therein.
Eur. J. Org. Chem. 2012, 893–896
© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
895