European Journal of Inorganic Chemistry
10.1002/ejic.201800347
1
2
3
4
5
6
7
8
9
0
Royal Society Of Chemistry, Cambridge, UK,
62
63
64
65
66
67
1063–1066; π-Bond strength: Ref 9c, c) R. E.
Shepherd, M. F. Hoq, N. Hoblack, C. R.
Johnson, Inorg. Chem. 1984, 23, 3249–3252;
d) C. M. Jones, C. R. Johnson, S. A. Asher, R.
E. Shepherd, J. Am. Chem. Soc. 1985, 107,
3772–3780.
2012; c) D. R. Weinberg, C. J. Gagliardi, J. F.
Hull, C. F. Murphy, C. A. Kent, B. C.
Westlake, A. Paul, D. H. Ess, D. G.
McCafferty, T. J. Meyer, Chem. Rev. 2012,
112, 4016–4093; d) J. J. Warren, J. M. Mayer,
Biochemistry 2015, 54, 1863–1878; e) I.
Siewert, Chem. Eur. J. 2015, 21, 15078–15091;
f) S. Hammes-Schiffer, J. Am. Chem. Soc.
2015, 137, 8860–8871.
68 [11] S. Tamagaki, Y. Kanamaru, M. Ueno, W.
69
Tagaki, Bull. Chem. Soc. Jpn. 1991, 64, 165–
174.
7
7
7
7
7
7
7
7
7
7
8
8
8
8
0
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
6
1 [12] K. Kirschke in Methoden Der Organischen
1 [2] T. J. Meyer, M. H. V. Huynh, H. H. Thorp,
Angew. Chemie 2007, 119, 5378–5399.
3 [3] a) I. Siewert, J. Gałęzowska, Chem. Eur. J.
2
3
4
Chemie (Houben-Weyl): Erweiterungs- und
Folgebände zur vierten Auflage. G. Thieme,
Stuttgart; New York, 1982.
2
4
5
6
2015, 21, 2780–2784; b) L. A. Stott, K. E.
Prosser, E. K. Berdichevsky, C. J. Walsby, J. J.
Warren, Chem. Commun. 2017, 53, 651–654.
5 [13] D. J. Wasylenko, H. M. Tatlock, L. S.
6
7
8 [14] R. A. Binstead, A. D. Zuberbühler, B. Jung,
9
0
1 [15] R. W. Taft, F. Anvia, M. Taagepera, J. Catalan,
2
3
Bhandari, J. R. Gardinier, C. P. Berlinguette,
Chem. Sci. 2013, 4, 734–738.
7 [4] a) R. F. Carina, L. Verzegnassi, A. F. Williams,
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
G. Bernardinelli, Chem. Commun. 1998, 2681–
2682; b) G. Stupka, L. Gremaud, G.
Bernardinelli, A. F. Williams, Dalton Trans.
2004, 407–412; c) C. Brewer, G. Brewer, C.
Luckett, G. S. Marbury, C. Viragh, A. M.
Beatty, W. R. Scheidt, Inorg. Chem. 2004, 43,
2402–2415; d) F. Lambert, C. Policar, S. Durot,
M. Cesario, L. Yuwei, H. Korri-Youssoufi, B.
Keita, L. Nadjo, Inorg. Chem. 2004, 43, 4178–
4188; e) G. Stupka, L. Gremaud, A. F.
Williams, Helv. Chim. Acta 2005, 88, 487–495;
f) A. Wu, J. Masland, R. D. Swartz, W.
Kaminsky, J. M. Mayer, Inorg. Chem. 2007,
46, 11190–11201; g) J. J. Warren, J. M. Mayer,
J. Am. Chem. Soc. 2008, 130, 2774–2776; h) K.
M. Lancaster, J. B. Gerken, A. C. Durrell, J. H.
Palmer, H. B. Gray, Coord. Chem. Rev. 2010,
254, 1803–1811; i) A. Wilting, M. Kügler, I.
Siewert, Inorg. Chem. 2016, 55, 1061–1068.
Spectfit, version 3.0.38; Windows; Spectrum
Software Associates: Chapel Hill, NC, 2006.
J. Elguero, J. Am. Chem. Soc. 1986, 108, 3237–
3239.
84 [16] D. Lide, CRC Handbook of Chemistry and
85 Physics, 2005, 8-42–8-51.
86 [17] Recalculation of the pH/pD: A. Krężel, W. Bal,
8
8
8
9
9
9
9
9
9
9
9
9
9
7
J. Inorg. Biochem. 2004, 98, 161-166.
8 [18] R. M. Acheson, An Introduction to the
9
0
Chemistry of Heterocyclic Compounds, Wiley,
New York, 1976.
1 [19] A fit with one twofold deprotonation was also
2
3
4
5
a
possible, the pK of this fit, 6.3(4), lies within
the error of the stepwise deprotonation. The
stepwise protonation fitted the absorption
changes at various wavelengths better.
6 [20] M. S. Bennington, H. L. C. Feltham, Z. J.
7
8
7 [5] B. P. Sullivan, D. J. Salmon, T. J. Meyer, J.
Peedin, Inorg. Chem. 1979, 18, 3369–3374.
9 [6] J. J. Warren, T. A. Tronic, J. M. Mayer, Chem.
Rev. 2010, 110, 6961–7001.
1 [7] a) M. Tilset, V. D. Parker, J. Am. Chem. Soc.
Buxton, N. G. White, S. Brooker, Dalton
Trans. 2017, 46, 4696–4710.
8
9 [21] The redox potential of the deprotonated
0
1
1
1
1
1
1
00
01
02
complexes could not be determined
experimentally, because of the low solubility of
2
3
4
5
6
7
8
9
1989, 111, 6711–6717; b) F. G. Bordwell, J.
Cheng, G. Z. Ji, A. V. Satish, X. Zhang, J. Am.
Chem. Soc. 1991, 113, 9790–9795; c) V. D.
Parker, K. L. Handoo, F. Roness, M. Tilset, J.
Am. Chem. Soc. 1991, 113, 7493–7498; d) D. 106 [23] V. W. Manner, A. D. Lindsay, E. A. Mader, J.
D. M. Wayner, V. D. Parker, Acc. Chem. Res. 107
these compounds under basic conditions.
•+/0
03 [22] Since the redox potential of DMAP
04
05
is not
known, we cannot draw any further conclusion
on the mechanism.
N. Harvey, J. M. Mayer, Chem. Sci. 2012, 3,
230-243.
1993, 26, 287–294; e) W.-Z. Liu, F. G. 108
Bordwell, J. Org. Chem. 1996, 61, 4778–4783.
1
1
1
1
1
1
1
1
1
09 [24] a) D. C. Miller, K. T. Tarantino, R. R. Knowles,
10
11
12
13
Top. Curr. Chem. 2016, 374: 30; b) B. M.
Lindley, A. M. Appel, K. Krogh-Jespersen, J.
M. Mayer, A. J. M. Miller, ACS Energy Letters
2016, 1, 698-704.
0 [8] M. F. Hoq, R. E. Shepherd, Inorg. Chem. 1984,
23, 1851–1858.
2 [9] a) C. R. Johnson, W. W. Henderson, R. E.
1
3
4
5
6
7
8
Shepherd, Inorg. Chem. 1984, 23, 2754–2763;
b) J. A. Winter, D. Caruso, R. E. Shepherd,
Inorg. Chem. 1988, 27, 1086–1089; c) M. G.
Elliott, R. E. Shepherd, Transit. Met. Chem.
1989, 14, 251–257; d) field effect: P. Muller,
Pure Appl. Chem. 1994, 66, 1077–1184.
14 [25] F. A. Miller, C. H. Wilkins, Anal. Chem. 1952,
15 24, 1253-1294.
16 [26] W. Beck, K. Suenkel, Chem. Rev. 1988, 88,
17 1405-1421.
9 [10] σ-Bond strength: a) A. J. Canty, C. V. Lee,
0
1
Inorg. Chim. Acta 1981, 54, L205–L206; b) A.
J. Canty, C. V. Lee, Organometallics 1982, 1,
7
This article is protected by copyright. All rights reserved.