1
618 Bull. Chem. Soc. Jpn. Vol. 79, No. 10 (2006)
Two-Photon Absorption
By comparing Table 2 and Fig. 4, we can see that the two-
This work was supported by NSFC (Nos. 20531070,
50323006, and 50402018), Guangdong Provincial Science
and Technology Bureau (No. 04205405) and China Postdoc-
toral Science Foundation (No. 2004036515).
photon fluorescence maxima of compound 2 do not shift com-
pared to the corresponding one-photon fluorescence maxima in
the same solvent. Although the two-photon fluorescence spec-
tra are measured at concentrations, higher than those need to
measure the one-photon fluorescence spectra, the Stokes’ shift
is large enough to make re-absorption effects negligible.39 As
shown in Fig. 4, there is no obvious overlap between the blue
side of the one-photon-induced fluorescence band and the red
side of the linear absorption band. For compound 4, the two-
photon fluorescence maximum has red-shifted compared to
the one-photon fluorescence maximum in DMF. This can be
ascribed to the effect of re-absorption for the linear absorption
band which slightly overlaps the emission band and to the high
concentrations in the two-photon fluorescence experiments
that made re-absorption significant. By considering the simi-
larities between SPEF and TPEF, we can conclude that, al-
though the molecules can be excited to different excited states
by one-photon absorption or two-photon absorption due to the
different spectral selection rules, they finally relax to the same
fluorescent excited state. It is clear that structural and environ-
mental factors influence the SPEF and TPEF properties.
The TPA Cross-Section. The TPA ꢁ of the two molecules
were determined by comparing their TPEF with the two-pho-
ton fluorescence excitation ꢁ of Rhodamine 6G (at a concen-
References
1
32.
2
M. Saruo, O. Nakamura, S. Kawata, Opt. Lett. 1997, 22,
1
B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer,
J. E. Ehrlich, L. L. Erskine, A. A. Keikal, S. M. Kuebler, I.-Y. S.
Lee, D. M. Maughon, J. Qin, H. R o¨ ckel, M. Rumi, X. L. Wu, S. R.
Marder, J. W. Perry, Nature 1999, 398, 51.
3
S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, Nature 2001,
12, 697.
W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K.
Cammack, C. K. Ober, J. W. Perry, S. R. Marder, Science 2002,
4
4
2
96, 1106.
5
43.
6
7
119, 341.
D. A. Parthenopoulos, P. M. Rentzepis, Science 1989, 245,
8
J. H. Strickler, W. W. Webb, Opt. Lett. 1991, 16, 1780.
A. S. Dvornikov, P. M. Rentzepis, Opt. Commun. 1995,
8 K. D. Belfield, Y. Liu, R. A. Negres, M. Fan, G. Pan, D. J.
Hagan, F. E. Hernandez, Chem. Mater. 2002, 14, 3663.
9 G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C.
Bhatt, A. G. Dillard, Opt. Lett. 1995, 20, 435.
10 J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. R o¨ ckel,
S. R. Marder, J. W. Perry, Opt. Lett. 1997, 22, 1843.
ꢂ4
ꢂ1
tration of 5 ꢃ 10 mol L in methanol) according to the fol-
4
0
lowing equation:
ꢀ
r cr nr Fs
1
J. Clin. Laser Med. Surg. 1997, 15, 201.
1
J. D. Bhawalkar, N. D. Kumar, C. F. Zhao, P. N. Prasad,
ꢁ
s ¼ ꢁ
r
;
ð1Þ
ꢀ
c n Fr
1
3.
1
2
3
W. Denk, J. H. Strickler, W. W. Webb, Science 1990, 248,
where the subscripts s and r refer to the sample and the refer-
ence material, and the terms c and n are the concentration and
refractive index of the sample solution, respectively. ꢀ is the
fluorescence quantum yield, F is two-photon-excited fluores-
cence integral intensity, and ꢁr is the TPA cross-section of
the reference molecule.
7
C. Xu, W. R. Zipfel, J. B. Shear, R. M. William, W. W.
Webb, Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 10763.
D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark,
M. P. Bruchez, F. W. Wise, W. W. Webb, Science 2003, 300,
434.
1
4
1
The excitation wavelengths of compounds 2 and 4 are 740
ꢂ3
1
5
K. D. Belfield, D. J. Hagan, E. W. Van Stryland, K. J.
Schafer, R. A. Negres, Org. Lett. 1999, 1, 1575.
K. D. Belfield, K. J. Schafer, W. Mourad, B. A. Reinhardt,
and 800 nm, respectively. The concentration was 1 ꢃ 10
ꢂ1
mol L . The two-photon cross-sections for rhodamine 6G are
2
1
6
1 and 35 GM at 740 and 800 nm, respectively.41 The TPA
J. Org. Chem. 2000, 65, 4475.
cross-sections of compounds 2 and 4 are 41 and 38 GM, re-
spectively. However, it should be noted that the optimal exci-
tation wavelength for the TPA should be slightly less than two
17 A. Abbotto, L. Beverina, R. Bozio, S. Bradamante, C.
Ferrante, G. A. Pagani, R. Signorini, Adv. Mater. 2000, 12, 1963.
18 Y.-X. Yan, X.-T. Tao, Y.-H. Sun, C.-K. Wang, G.-B. Xu,
W.-T. Yu, H.-P. Zhao, J.-X. Yang, X.-Q. Yu, Y.-Z. Wu, X. Zhao,
M.-H. Jiang, New. J. Chem. 2005, 29, 479.
times of the wavelength for the linear absorption maxima.42
A
significant increase in the TPA cross-section value is expected
at the optimal excitation wavelength for TPA.
19 O.-K. Kim, K.-S. Lee, H. Y. Woo, K.-S. Kim, G. S. He,
S. H. Guang, J. Swiatkiewicz, P. N. Prasad, Chem. Mater. 2000,
1
2, 284.
Y.-X. Yan, X.-T. Tao, Y.-H. Sun, G.-B. Xu, C.-K. Wang,
J.-X. Yang, X. Zhao, M.-H. Jiang, J. Solid State Chem. 2004, 177,
007.
Conclusion
2
0
In summary, two new heterocycle-based two-photon absorp-
tion chromophores have been synthesized and characterized.
The crystal structure of compound 4 was determined by X-
ray single-crystal diffraction analysis, and showed that com-
pound 4 has a planar structure that contributes to the two-
photon absorption. These two molecules exhibit strong one-
and two-photon fluorescence. Moreover, chromophore 2 shows
excellent thermal stability, one-photon fluorescence quantum
yields, and long two-photon fluorescent lifetimes. These results
indicate that chromophore 2 is a good two-photon absorbing
chromophore and can be used in nonlinear optical materials.
3
2
1
Y.-X. Yan, X.-T. Tao, Y.-H. Sun, W.-T. Yu, G.-B. Xu,
C.-K. Wang, J.-X. Yang, X. Zhao, M.-H. Jiang, Bull. Chem.
Soc. Jpn. 2005, 78, 300.
M. Albota, D. Beljonne, J.-L. Br e´ das, J. E. Ehrlich, J.-Y.
Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder,
2
2
D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G.
¨
Subramaniam, W. W. Webb, X.-L. Wu, C. Xu, Science 1998,
281, 1653.
23 P. K. Frederiksen, M. Jørgensen, P. R. Ogilby, J. Am.