Please do not adjust margins
Photochemical & Photobiological Sciences
Page 4 of 6
DOI: 10.1039/C7PP00258K
COMMUNICATION
Journal Name
(3aR,7aS)-hexahydroisobenzofuran-1(3H)-one, total 83 µmol,
In conclusion, the new synthesis route for the lactones of
42 % yield) as the stereoretentive products, and the other diols with Pt/TiO2 photocatalysts was established. The
lactone
compounds
8
and
9
((3aR,7aR)- photocatalytic lactonization proceeded via two-step
(3aS,7aS)- dehydrogenation process as a two-photon process. The Pt
hexahydroisobenzofuran-1(3H)-one
and
hexahydroisobenzofuran-1(3H)-one, total 8.0 µmol, 4.0 % loaded rutile TiO2 photocatalyst exhibited a higher yield of
yield) as the minor products of the stereoinversion reaction lactones with higher selectivity than Pt loaded anatase TiO2.
(Table 2, entry 1). The Pt/TIO-8(A) photocatalyst gave the same The blended catalyst consisting of the Pt/TiO2 photocatalyst
products with low yields (Table 2, entry 2). The Pt/TIO-6(R) and the Al2O3 acid catalyst is more efficient for the
photocatalyst gave a higher stereoretention ratio, r=11, than photocatalytic dehydrogenative lactonization than Pt/TiO2
the Pt/TIO-8(A) photocatalyst, r=5.2 (Table 2, entries 1 and 2). photocatalyst alone.
It was experimentally confirmed that the stereoinversion
products,
and 9, were formed by a photocatalytic reaction22 scholarship. A. Tyagi would like to thank JICA for providing the
and not by a catalytic keto-enol tautomerization23 or a Norrish scholarship under the IIT Hyderabad-JICA Friendship project.
I type photochemical reaction24 from the major products,
and , respectively, in the present condition since the r values
E. Wada would like to thank JSPS for the doctoral
8
7
6
Notes and references
for the Pt/TIO-6 and Pt/TIO-8 samples did not change even
after the stirring of the resulting reaction mixture in dark with
the catalyst or the photoirradiation of its filtrate without the
catalyst. It should be noted that the activity of the
photocatalytic epimerization depends on the property of the
TiO2 photocatalyst. The same tendency to retain the
stereochemical structure was observed in the reaction of
1
D. M. Paul, Essential of Organic Chemistry, 3rd ed., 2006
Pearson, pp.225
T. Mukaiyama, Angew. Chem. Int. Ed. Engl., 1979, 18, 707.
,
2
3
S. Kreimerman, I. Ryu, S. Minakata and M. Komatsu, Org.
Lett., 2000, , 289; E. Yoneda, S. W. Zhang, D. Y. Zhou, K.
2
Onitsuka and S. Takahashi, J. Org. Chem., 2003, 68, 8571; J.
W. Kramer, E. B. Lobkovsky and G. W. Coates, Org.
Lett., 2006, 8, 3709.
trans-1,2-cyclohexanedimethanol (
but the total yields of lactone compounds decreased in
comparison with the lactonization of cis-1,2-
cyclohexanedimethanol ( ), which would be related to the
structural torsion of the lactone and . The lactonization of
5) (Table 2, entries 3 and 4),
4
Y. Inoue, Y. Sasaki and H. Hashimoto, Bull. Chem. Soc. Jan.
1978, 51, 2375; B. Pierre, D. Matt and D. Nobel, J. Am. Chem.
Soc., 1988, 110, 3207; S. Li, B. Miao, W. Yuan and S. Ma, Org.
Lett., 2013, 15, 977.
4
8
9
5
6
K. Fujita, W. Ito and R. Yamaguchi, ChemCatChem, 2014, 6,
109.
1,4-butanediol (10) also proceed as well as the other lactones
T. Suzuki, K. Morita, M. Tsuchida and K. Hiroi, Org. Lett.,
2002, , 2361; R. Kawahara, K. Fujita and R. Yamaguchi, J.
(Table 2, entries 5 and 6), but the reaction of 1,5-pentanediol
4
(
12) hardly proceeded (Table 2, entries 7 and 8). In these
Am. Chem. Soc., 2012, 134, 3643; J. Zhao and J. F. Hartwig,
Organometallics, 2005, 24, 2441.
cases, the high flexibility of the carbon chain structure would
decrease the chance to form the cyclic structure, which
decreases the yield of lactones.
7
8
9
J. M. Hoover and S.S. Stahl, J. Am. Chem. Soc., 2011, 133
16901; X. Xie, and S.S Stahl, J. Am. Chem. Soc., 2015, 137
3767.
N. Ichikawa, S. Sato, R. Takahashi, T. Sodesawa and K. Inui, J.
Mol. Catal. A Chem., 2004, 212, 197; T. Hu, H. Yin, R. Zhang,
H. Wu, T. Jiang and Y. Wada, Catal. Commun., 2007, 8, 193.
,
,
Table 2. The lactonization of various diols with the Pt/TiO2
photocatalysts.a
J. Huang, W. L. Dai, H. Li and K. Fan, J. Catal., 2007, 252, 69.
10 T. Akashi, S. Sato, R. Takahashi, T. Sodesawa and K. Inui,
Catal. Commun., 2003, , 411.
11 T. Mitsudome, A. Noujima, T. Mizugaki, K. Jitsukawa and K.
4
Kaneda, Green Chem., 2009, 11, 793.
12 A. S. Touchy and K. Shimizu, RSC Advances, 2015, 5, 29072.
13 Q. Zhu, X. Chu, Z. Zhang, W. L. Dai and K. Fan, Green Chem.,
2010, 12, 205.
Entry Catalyst Reactant Product Yield (%)
r c
14 Q. Zhu, X. Chu, Z. Zhang, W. L. Dai and K. Fan, Appl. Catal. A:
General, 2012, 435, 141.
15 Z. Zhang, Q. Zhu, J. Ding, X. Liu and W. L. Dai, Appl. Catal. A:
General, 2014, 482, 171.
16 Y. X. Liu, T. F. Xing, Z. J. Wei, X. N. Li and W. Yan, Catal.
Commun., 2009, 10, 2023.
17 E. Wada, T. Takeuchi, Y. Fujimura, A. Tyagi, T. Kato and H.
Total
46
6
+
7
8+9
1
2
3
4
5
6
7
8
Pt/TIO-6
Pt/TIO-8
Pt/TIO-6
Pt/TIO-8
4
5
6
6
–
–
9b
9b
42
17
4.0 11
3.3 5.2
20
24
3.1 21
1.9 8.1
6.8
4.5
10
Pt/TIO-6 10
Pt/TIO-8
11
13
20
Yoshida, Catal. Sci. Technol., 2017, 7, 2457.
5.0
2.5
n.d. d
18 H. Yoshida, Y. Fujimura, H. Yuzawa, J. Kumagai and T.
Yoshida, Chem. Commun., 2013, 49, 3793; A. Tyagi, T.
Matsumoto, T. Kato and H. Yoshida, Catal. Sci. Technol.,
Pt/TIO-6 12
Pt/TIO-8
a
Reaction conditions: 200 µmol of diol,
4 mL of acetonitrile, the other
2016,
Yoshida, Catal. Sci. Technol., 2017,
6
, 4577; A. Tyagi, A. Yamamoto, T. Kato and H.
7
conditions were the same as those in Fig. 1. b The calibration curve of starting
materials were applied to determine the yields of lactones. c r = (sum of yields
of products via stereoretention reaction) / (sum of yields of products via
stereoinversion reaction). d Not detected.
, 2616.
19 R. J. Davis, J. L. Gainer, G. O'Neal and I. W. Wu, Water
Environ. Research, 1994, 66, 50; A. V. Vorontsov, E. N.
Savinov, G. B. Barannik, V. N. Froitsky and V. N. Parmon,
Catal. Today, 1997, 39, 207; T. Hisatomi, K. Miyazaki, K.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins