482
X. Cai et al. / Journal of Fluorine Chemistry 126 (2005) 479–482
(t, J = 266 Hz), 117.0 (d, J = 22.5 Hz), 120.7, 123.4 (k,
J = 6 Hz), 124.3, 126.1 (d, J = 2.6 Hz), 132.6, 148.7, 151.9,
158.0 (d, J = 2.5 Hz); 19F NMR, d: À81.0 (dd, J = 73.3 and
6.1 Hz, 2F), À135.4 (m, 1F); HRMS (EI) calculated:
C12H9F3O2, M+, 242.0555, found: 242.0561.
The pure naphthol products, 1a–c, were obtained by flash
chromatography.
2-Fluoro-1-naphthol (1a): white solid, 52 mg (85%); mp
1
72–74 8C (lit 71–73 8C) [1]; H NMR 5.91 (s, 1H), 7.22–
7.32 (m, 1H), 7.34–7.47 (m, 1H), 7.53–7.62 (m, 1H), 7.72–
7.83 (m, 2H), 8.02–8.11 (m, 1H); 19F NMR À145.8 (m, 1F);
IR(CH2Cl2) 3562, 3044, 2966, 1605, 1058, 941, 867, 816;
MS: 162 (M+, 83), 149(50), 133(100), 114(29), 85(23).
6-Methyl-2-fluoro-1-naphthol (1b): white solid, yield
4.2.5. Reaction with 3e
Following the procedure described above, 110 mg of a
light yellow oil mixture of products, 1-difluoromethoxy-2-
fluoro-2-methylnaphthalene, 6e (37%) and 3-difluoro-
methoxy-2-methyl-1H-indene, 4e (13%) (6e:4e = 100:36)
was obtained.
1
75%; mp 83–85 8C; H NMR 2.58 (s, 3H), 5.42 (s, 1H),
7.16–7.36 (m, 3H), 7.68 (d, 15 Hz, 1H), 7.94–7.98 (m, 1Hz);
19F NMR À145.0 (dd, 7.6 Hz, 29.6 Hz, 1F); 13C NMR
22.19, 114.50, 114.79, 116.04, 120.33, 120.43, 120.57,
120.66, 127.74, 128.09, 135.99; MS: 176(M+, 100), 147(38),
133(66), 128(36), 64(18); HRMS: 176.0629, required,
C11H9FO, 176.0637.
1-Difluoromethoxy-2-fluoro-2-methylnaphthalene (6e):
1H NMR d 2.49 (t, J = 1.1 Hz, 3H), 6.72 (t, J = 74.6 Hz,
1H), 7.45–7.58 (m, 3H), 7.76 (d, J = 7.7 Hz, 1H), 8.12 (d,
J = 8.2 Hz, 1H); 19F NMR d À80.7 (dd, J = 73.2 and 6.1 Hz,
2F), À135.3 (m, 1F); HRMS (EI) calculated: C12H9F3O, M+,
226.0605, found: 226.0663.
5-Chloro-2-fluoro-1-naphthol (1c): white solid, yield
1
89%; mp 96–98 8C; H NMR 5.56 (s, 1H), 7.24–7.32 (m,
3-Difluoromethoxy-2-methyl-1H-indene (4e): 1H NMR
d 2.11 (s, 3H), 3.30 (s, 2H), 6.50 (t, J = 74.6 Hz, 1H), 7.17–
7.40 (m, 4H); 19F NMR d À79.7 (d, J = 74.2 Hz, 2F); HRMS
(EI) calculated: C11H10F2O, M+, 196.0700, found:
196.0707.
2H), 7.41–7.46 (m, 1H), 7.77–7.79 (m, 1H), 8.10–8.16 (m,
1H); 19F NMR À145.3 (m, 1F); 13C NMR (CDCl3), 116.7,
117.1, 119.7, 119.8, 123.6, 123.7, 126.5, 126.5, 126.5,
127.0; MS, 196 (M+, 100), 198(33), 148(9), 133(46),
113(12); HRMS: 196.0091, required, C10H6FClO, found
196.0091.
4.3. Reaction of TFDA with 1,3-indandione
Following the general procedure described above, 15 mg
1a-difluoromethoxy-1,1-difluoro-1a,6a-dihydro-1H-
Acknowledgment
of
cyclopropa[a]inden-6-one (8) and 66 mg of 3-difluoro-
methoxy-inden-1-one (7) were obtained.
The support of this work in part by the National Science
Foundation is gratefully acknowledged.
1a-Difluoromethoxy-1,1-difluoro-1a,6a-dihydro-1H-
cyclopropa[a]indene-6-one (8): yellow oil, yield 6%;
1H NMR d 6.32 (dd, J = 13.4 and 2.3 Hz, 1H), 6.82
(ddd, J1 = 70.7 Hz, J2 = 71.9 Hz, J3 = 1.2 Hz, 1H), 7.64–
7.71 (m, 1H), 7.76–7.90 (m, 2H), 8.12 (d, J = 7.8 Hz, 1H);
19F NMR d À82.0 (m, 2F), À110.4 (dm, J = 354.0 Hz, 2F);
HRMS (EI) calculated: C11H6F4O2, M+, 246.0304, found:
246.0295.
References
[1] J. Airey, D.H.R. Barton, A.K. Ganguly, R.H. Hesse, M.M. Pechet,
Anal. Quim. 70 (1974) 871–875.
[2] M. Zupan, S. Stavber, J. Org. Chem. 50 (1985) 3609–3612.
[3] T.B. Patrick, D.L. Darling, J. Org. Chem. 51 (1986) 3242–3244.
[4] W.E. Barnette, J. Am. Chem. Soc. 106 (1984) 452–454.
[5] T. Umemoto, S. Fukami, G. Tomizawa, K. Harasawa, K. Kawada, K.
Tomita, J. Am. Chem. Soc. 112 (1990) 8563–8575.
3-Difluoromethoxyinden-1-one (7): yellow solid, mp 69–
71 8C, yield 34%; 1H NMR d 5.20 (t, J = 1.5 Hz, 1H), 6.66 (t,
J = 71.5 Hz, 1H), 7.19–7.23 (m, 1H), 7.27–7.39 (m, 2H),
[6] M. Zupan, J. Iskra, S. Stavber, Bull. Chem. Soc. Jpn. 68 (1995) 1655–
1660.
7.40–7.44 (m, 1H); 13C NMR
d 101.3, 114.9 (t,
[7] R.E. Banks, M.K. Besheesh, S.N. Mohialdin-Khaffaf, I. Sharif, J.
Chem. Soc., Perkin Trans. 1 (1996) 2069–2076.
J = 265.6 Hz), 119.1, 122.0, 130.8, 131.3, 132.9, 138.3,
169.8, 193.6; 19F NMR d À86.7 (d, J = 73.2 Hz, 2F); LRMS:
C10H6F2O2, M+ 196, (M–CF2) 146.
[8] S. Stavber, M. Zupan, Chem. Lett. (1996) 1077–1078.
[9] T. Umemoto, G. Tomizawa, J. Org. Chem. 60 (1995) 6563–6570.
[10] W.R. Dolbier Jr., F. Tian, J.-X. Duan, A.-R. Li, S. Ait-Mohand, O.
Bautista, S. Buathong, J.M. Baker, J. Crawford, P. Anselme, X.-H. Cai,
A. Modzelewska, H. Koroniak, M.A. Battiste, Q.-Y. Chen, J. Fluorine
Chem. 125 (2004) 459–469.
4.4. General procedure for preparation of
2-fluoro-1-naphthols, 1a–c
[11] X.-H. Cai, Y.-A. Zhai, I. Ghiviriga, K.A. Abboud, W.R. Dolbier Jr., J.
Org. Chem. 69 (2004) 4210–4215.
A sealed tube containing 0.33 mmol of difluoromethy-
lether (6a–c), glacial acid (2.5 mL), and 48% hydrogen
bromide (1.5 mL) was heated to 120 8C overnight. The tube
was then cooled and opened carefully. The reaction mixture
was poured into water, and the aqueous layer was extracted
three times with diethyl ether. The combined extracts were
washed with water, dried over Na2SO4 and concentrated.
[12] W.R. Dolbier Jr., J.J. Keaffaber, C.R. Burkholder, S.F. Sellers, H.
Koroniak, J. Pradhan, Tetrahedron Lett. 32 (1991) 3933–3936.
[13] O.M. Nefedov, N.V. Volchkov, in: O.M. Nefedov (Ed.), Chemistry of
Carbenes and Small-sized Cyclic Compounds, MIR Publishers, Mos-
cow, 1989, pp. 69–100.
[14] W.R. Dolbier Jr., J.J. Keaffaber, C.R. Burkholder, H. Koroniak, J.
Pradhan, Tetrahedron 48 (1992) 9649–9660.