1386
M. C. Bröhmer et al.
LETTER
Miyamoto, O.; Sato, K. J. Org. Chem. 1987, 52, 5495.
Table 2 Optimization of the Reaction Conditions
(c) Nicolaou, K. C.; Pfefferkorn, J. A.; Cao, G.-Q. Angew.
Chem. Int. Ed. 2000, 39, 734. (d) Larock, R. C.; Wei, L.;
Hightower, T. R. Synlett 1998, 522.
Entry
Product 4 Conditionsa Time
Yield (%)
1
2
4e
4e
4e
4e
4a
4a
4k
4k
4g
4g
A
B
B
B
A
B
A
B
C
D
16 h
34
29
40
60
59
61
12
64
–
(4) Chang, S.; Grubbs, R. H. J. Org. Chem. 1998, 63, 864.
(5) El Sohly, M. A.; Boeren, E. G.; Turner, C. E. J. Heterocycl.
Chem. 1978, 15, 699.
(6) (a) Lesch, B.; Toräng, J.; Vanderheiden, S.; Bräse, S. Adv.
Synth. Catal. 2005, 347, 555. (b) Lesch, B.; Toräng, J.;
Nieger, M.; Bräse, S. Synthesis 2005, 1888.
(7) (a) Satoh, Y.; Stanton, J. L.; Hutchison, A. J.; Libby, A. H.;
Kowalski, T. J.; Lee, W. H.; White, D. H.; Kimble, E. F.
J. Med. Chem. 1993, 36, 3580. (b) Kaye, P. T.; Nocanda,
X. W. J. Chem. Soc., Perkin Trans. 1 2002, 1331.
(c) Ibrahem, I.; Sundén, H.; Rios, R.; Zhao, G.-L.; Córdova,
A. CHIMIA 2007, 61, 219.
(8) (a) Govender, T.; Hojabri, L.; Moghaddam, F. M.;
Arvidsson, P. I. Tetrahedron: Asymmetry 2006, 17, 1763.
(b) Sundén, H.; Ibrahem, I.; Zhao, G.-L.; Eriksson, L.;
Córdova, A. Chem. Eur. J. 2007, 13, 574. (c) Zu, L.; Wang,
J.; Li, H.; Xie, H.; Jiang, W.; Wang, W. J. Am. Chem. Soc.
2007, 129, 1036.
(9) (a) Ohno, K.; Tsuji, J. J. Am. Chem. Soc. 1968, 90, 99.
(b) Doughty, D. H.; Pignolet, L. H. J. Am. Chem. Soc. 1978,
100, 7083. (c) Beck, C. M.; Rathmill, S. E.; Park, Y. J.;
Chen, J.; Crabtree, R. H.; Liable-Sands, L. M.; Rheingold,
A. L. Organometallics 1999, 18, 5311. (d) Kreis, M.;
Palmelund, A.; Bunch, L.; Madsen, R. Adv. Synth. Catal.
2006, 348, 2148. (e) Taarning, E.; Madsen, R. Chem. Eur. J.
2008, 14, 5638. (f) Use in total synthesis: Takahashi, T.;
Naito, Y.; Tsuji, J. J. Am. Chem. Soc. 1981, 103, 5261. (g)
Asymmetric variant: Fessard, T.; Andrews, S. P.;
Motoyoshi, H.; Carreira, E. M. Angew. Chem. Int. Ed. 2007,
46, 9331. (h) For a review, see: Necas, D.; Kotora, M. Curr.
Org. Chem. 2007, 11, 1566.
30 min
50 min
2 × 40 min
16 h
3
4
5
6
2 × 40 min
16 h
7
8
30 min
4 d
9
10
60 min
–
a Conditions A: RhCl3⋅xH2O (5 mol%), dppp (10 mol%), diglyme, re-
flux (oil bath). Conditions B: RhCl3×xH2O (5 mol%), dppp (10
mol%), diglyme, microwave irradiation (200 °C, 200 W). Conditions
C: [IrCl(cod)]2 (2.5 mol%), Ph3P (5 mol%), THF, reflux (oil bath).
Conditions D: [IrCl(cod)]2 (2.5 mol%), Ph3P (5 mol%), THF, MW
irradiation (100 °C, 200 W).
O
O
O
Δ
O
Me
O
O
Me
(R)-3g
rac-3g
(10) (a) Yus, M.; Foubelo, F.; Ferrández, J. V. Eur. J. Org. Chem.
2001, 2809. (b) Asymmetric variants: Bouzbouz, S.;
Goujon, J.-Y.; Deplanne, J.; Kirschleger, B. Eur. J. Org.
Chem. 2000, 3223.
Scheme 4 Proposed mechanism of the racemization of 3g
mechanism (Scheme 4). Similar racemizations were
reported for a series of 2-aryl-2-methyl-2H-chromenes.14
Attempts to decrease the reaction temperature and/or us-
ing other catalysts15 in order to prevent this racemization
reaction were unfruitful, yet (Table 2, entries 9 and 10).
(11) Typical Procedure for the Rh-Catalyzed Deformylation
of 3-Formyl-2H-chromenes
Formylchromene 3a (390 mmol), RhCl3·xH2O (19.5 mmol, 5
mol%), and dppp (39.0 mmol, 10 mol%) in diglyme (2 mL)
were refluxed under argon for 16 h. After cooling, pentane
(10 mL) was added, and the mixture was washed with H2O
(5 × 5 mL). The organic layer was dried over Na2SO4 and
evaporated. The crude product was purified by column
chromatography on SiO2.
In summary, we present the first metal-catalyzed decarbo-
nylation reaction of 3-formylchromenes and its applica-
tion in the synthesis of the natural product
eulatachromene. The application towards the synthesis of
more complex chromenes is under investigation.
(12) Selected Data
Compound 4a: 1H NMR (400 MHz, CDCl3): d = 1.40 (s, 3
H), 1.58 (s, 3 H), 1.60–1.79 (m, 2 H), 1.67 (s, 3 H), 2.12 (mc,
2 H), 5.11 (tt, J = 7.2, 1.4 Hz, 1 H), 5.56 (d, Jcis = 9.8 Hz, 1
H), 6.36 (d, Jcis = 9.8 Hz, 1 H), 6.77 (d, J = 8.0 Hz, 1 H), 6.82
(ddd, J = 7.6, 7.4, 1.2 Hz, 1 H), 6.96 (dd, J = 7.6, 1.6 Hz, 1
H), 7.09 (ddd, J = 8.0, 7.4, 1.6 Hz, 1 H). 13C NMR (100
MHz, CDCl3): d = 17.6, 22.7, 25.7, 26.5, 41.3, 78.4, 116.1,
120.5, 121.1, 122.8, 124.1, 126.3, 129.0, 129.6, 131.7,
153.2. MS–FAB: m/z (%) = 229.2 (11) [M+ + H], 228.2 (18)
[M+], 145.1 (100) [M+ – C6H11], 136.1 (10). HRMS: m/z
calcd for C16H20O: 228.1514. Found: 228.1510. Anal. Calcd
for C16H20O: C, 84.16; H, 8.83. Found: C, 84.14; H, 8.69.
(13) Smith, L. R.; Mahoney, N.; Molyneux, R. J. J. Nat. Prod.
2003, 66, 169.
Acknowledgment
Financial support has been provided by the DFG (Bonn) and the
University of Karlsruhe (TH). We thank Prof. Karola Rück-Braun
for helpful discussions.
References and Notes
(1) Shi, Y.; Shi, M. Org. Biomol. Chem. 2007, 1499; and
references cited therein.
(2) (a) Iwai, I.; Ide, J. Chem. Pharm. Bull. 1963, 11, 1042.
(b) Babu, K. S.; Raju, B. C.; Praveen, B.; Kishore, K. H.;
Murty, U. S.; Rao, J. M. Heterocycl. Commun. 2003, 9, 519.
(3) (a) Kahn, P. H.; Cossy, J. Tetrahedron Lett. 1999, 40, 8113.
(b) Inoue, S.; Ikeda, H.; Sato, S.; Horie, K.; Ota, T.;
(14) Harié, G.; Samat, A.; Guglielmetti, R.; Van Parys, I.;
Saeyens, W.; De Keukeleire, D.; Lorenz, K.; Mannschreck,
A. Helv. Chim. Acta 1997, 80, 1122.
(15) Iwai, T.; Fujihara, T.; Tsuji, Y. Chem. Commun. 2008, 6215.
Synlett 2009, No. 9, 1383–1386 © Thieme Stuttgart · New York