C O M M U N I C A T I O N S
starting substrate to amplify efficiently. Collectively, these results
indicate that RDPCR can selectively and efficiently amplify DNA
templates that have undergone bond formation and that amplification
is dependent on the intramolecularity of the resulting template-
primer species.16 These experiments were corroborated using an
azide/alkyne substrate that undergoes a Cu(I)-catalyzed cycload-
dition reaction (see Supporting Information).
In principle, RDPCR can also enable efficient selection for bond
cleavage, which has yet to be studied in a DNA-encoded context.
To explore this possibility, we evaluated the ability of DNA-linked
peptides to undergo cleavage mediated by a protease (Figure 7).
We anticipated that protease-mediated cleavage of a DNA-peptide
conjugate would expose a primary amine group, which would then
undergo DNA-templated amide bond formation to generate a hairpin
template for efficient PCR.17 In contrast, the absence of proteolysis
should result in no amide formation and thus inefficient PCR
amplification.
that catalyze bond-forming or bond-cleaving reactions including
those that do not generate nucleic acid-like products.
Acknowledgment. This work was supported by the Howard
Hughes Medical Institute and the NIH/NIGMS (R01GM065865).
D.J.G. gratefully acknowledges a joint American Cancer Society-
Canary Foundation postdoctoral fellowship and research support
from the Kavli Foundation. We thank Dr. Yinghua Shen for
assistance with mass spectrometry.
Supporting Information Available: Experimental procedures and
compound characterization data. This material is available free of
References
(1) Seminal reports: (a) Tuerk, C.; Gold, L. Science 1990, 249, 505. (b)
Ellington, A. D.; Szostak, J. W. Nature 1990, 346, 818. (c) Robertson,
D. L.; Joyce, G. F. Nature 1990, 344, 467. For a general review, see: (d)
Wilson, D. S.; Szostak, J. W. Annu. ReV. Biochem. 1999, 68, 611.
(2) Recent reviews of evolved DNA/RNA aptamers: (a) Shamah, S. M.; Healy,
J. M.; Cload, S. T. Acc. Chem. Res. 2008, 41, 130. (b) Gopinath, S. H. B.
Anal. Bioanal. Chem. 2007, 387, 171.
(3) In Vitro selections of DNA-linked small molecules: (a) Wrenn, S. J.;
Weisinger, R. M.; Halpin, D. R.; Harbury, P. B. J. Am. Chem. Soc. 2007,
129, 13137. (b) Melkko, S.; Zhang, Y.; Dumelin, C. E.; Scheuermann, J.;
Neri, D. Angew. Chem., Int. Ed. 2007, 46, 4671. Mock selections: (c)
Doyon, J. B.; Snyder, T. M.; Liu, D. R. J. Am. Chem. Soc. 2003, 125,
12372. (d) Gartner, Z. J.; Tse, B. N.; Grubina, R.; Doyon, J. B.; Snyder,
T. M.; Liu, D. R. Science 2004, 305, 1601.
(4) (a) Silverman, S. Chem. Commun. 2008, 3467. (b) Joyce, G. F. Annu. ReV.
Biochem. 2004, 73, 791.
(5) (a) Kanan, M. W.; Rozenman, M. M.; Sakurai, K.; Snyder, T. M.; Liu,
D. R. Nature 2004, 431, 545. (b) Rozenman, M. M.; Liu, D. R.
ChemBioChem 2006, 7, 253. (c) Rozenman, M. M.; Kanan, M. W.; Liu,
D. R. J. Am. Chem. Soc. 2007, 129, 14933.
(6) Tarasow, T. M.; Tarasow, S. L.; Eaton, B. E. Nature 1997, 389, 54. (b)
Seelig, B.; Jaschke, A. Chem. Biol. 1999, 6, 167. Other tags may be used.
For selected examples, see: (c) Chandra, M.; Silverman, S. K. J. Am. Chem.
Soc. 2008, 130, 2936. (d) Pradeepkumar, P. I.; Hobartner, C.; Baum, D. A.;
Silverman, S. K. Angew Chem., Int. Ed. 2008, 47, 1753. (e) Johnston, W. K.;
Unrau, P. J.; Lawrence, M. S.; Glasner, M. E.; Bartel, D. P. Science 2001,
292, 1319.
Figure 7. RDPCR-based protease-mediated peptide cleavage selection. PCR
conditions for PAGE samples: 19 fmol of DNA in 30 µL, 23 cycles (lanes
1-5) or 25 cycles (lanes 6-9). D ) DMT-MM; E ) EDC + sNHS.
(7) (a) Breaker, R. R.; Joyce, G. F. Chem. Biol. 1994, 1, 223. (b) Sheppard,
T. L.; Ordoukhanian, P.; Joyce, G. F. Proc. Natl. Acad. Sci. U.S.A. 2000,
97, 7802. For an alternative approach, see: (c) Hobartner, C.; Pradeepkumar,
P. I.; Silverman, S. K. Chem. Commun. 2007, 2255.
(8) (a) Rozenman, M. M.; McNaughton, B. R.; Liu, D. R. Curr. Opin. Chem.
Biol. 2007, 11, 259. See also: (b) Wrenn, S. J.; Harbury, P. B. Annu. ReV.
Biochem. 2007, 76, 331.
(9) Note that in contrast with a conventional selection in which unfit library
members are discarded and sequences encoding surviving members are
replicated in a subsequent step, RDPCR achieves the selective replication
of only those sequences encoding desired library members.
(10) Ogawa, A.; Maeda, M. Biorg. Med. Chem. Lett. 2007, 17, 3156.
(11) Computation carried out using the Oligonucleotide Modeling Platform
(OMP, DNA Software, Inc.).
(12) For examples of phosphodiester bond formation-dependent PCR, see: (a)
Bartel, D. P.; Szostak, J. W. Science 1993, 261, 1411. (b) Makrigiorgos,
G. M. Human Mut. 2004, 23, 406. (c) Troutt, A. B.; McHeyzer-Williams,
M. G.; Pulendran, B.; Nossal, G. J. V. Proc. Natl. Acad. Sci. U.S.A. 1992,
89, 9823.
(13) For a general review, see: Kubista, M.; Andrade, J. M.; Bengtsson, M.;
Forootan, A.; Jona´k, J.; Lind, K.; Sindelka, R.; Sjo¨back, R.; Sjo¨green, B.;
Stro¨mbom, L.; Ståhlberg, A.; Zoric, N. Mol. Asp. Med. 2006, 27, 95.
(14) Gartner, Z. J.; Liu, D. R. J. Am. Chem. Soc. 2001, 123, 6961.
(15) Heck, R. F. Org. React. 1982, 27, 345. See also ref 5a.
(16) As little as 10 fmol of 9d and 9b could be carried through the process
with similar results, suggesting that selections can be performed on a very
small scale.
(17) For approaches to protease substrate profiling by derivitization of free
R-amines, see: (a) Mahrus, S.; Trinidad, J. C.; Barkan, D. T.; Sali, A.;
Burlingame, A. L.; Wells, J. A. Cell 2008, 134, 866. (b) McDonald, L.;
Robertson, D. H. L.; Hurst, J. L.; Beynon, R. J. Nat. Methods 2005, 2,
955. (c) Gevaert, K.; Goethals, M.; Martens, Van Damme, J.; Staes, A.;
Thomas, G. R.; Vandekerckhove, J. Nat. Biotechnol. 2003, 21, 566.
(18) Substrate designed in consultation with Sigma-Aldrich Protease finder
(http://sigma-aldrich.com/proteasefinder).
(19) DNA-templated amide bond formation with DMT-MM: (a) Li, X. Y.;
Gartner, Z. J.; Tse, B. N.; Liu, D. R. J. Am. Chem. Soc. 2004, 126, 5090.
With EDC/sNHS: (b) Gartner, Z. J.; Kanan, M. W.; Liu, D. R. Angew.
Chem., Int. Ed. 2002, 41, 1796. For a review of DTS, see: (c) Li, X. Y.;
Liu, D. R. Angew. Chem., Int. Ed. 2004, 43, 4848.
A DNA-N-acetyl-pentapeptide conjugate (17), synthesized by
solid phase cosynthesis, was exposed to subtilisin A. The peptide
sequence (Ac-N-AFGPA) was designed to include cleavage sites
for subtilisin A.18 The enzyme-treated DNA was combined with a
carboxylic acid-linked DNA primer (10c) under conditions (DMT-
MM or sNHS+EDC) that support DNA-templated amide bond
formation.19
Addition of the protease-digested and carboxylate-ligated
DNA-peptide conjugate (18) to a PCR reaction resulted in efficient
PCR amplification. In contrast, no PCR product was detected by
PAGE when unfunctionalized DNA (4a) was used in place of the
pentapeptide or when subtilisin A was omitted. Likewise, omission
of the amide formation reagents also resulted in inefficient PCR
amplification, consistent with the necessity of intramolecular primer
hybridization for rapid amplification. These findings together
demonstrate the ability of RDPCR to rapidly detect DNA-linked
peptide substrates of protease enzymes.
In conclusion, we have developed and validated RDPCR as a
new, entirely solution-phase method for the selective amplification
of DNA sequences encoding molecules that undergo bond formation
or bond cleavage.9 By obviating the need to perform solid-phase
capture, washing, and elution steps, RDPCR can greatly streamline
the selection process for applications such as DNA-encoded reaction
discovery and protease activity profiling. Compared with the
performance characteristics of previous in Vitro selection methods,3c,5a
the data above suggest that RDPCR may also offer superior
enrichment factors (signal:background ratios). In addition, RDPCR
may be applicable to the evolution of ribozymes and DNAzymes
JA903084A
9
J. AM. CHEM. SOC. VOL. 131, NO. 26, 2009 9191