Communications
vo,[25,14a] while others have not been reported. Also, although
[1] a) H. Takashima, Curr. Top. Med. Chem. 2003, 3, 991; b) M.
Gaynor, A. S. Mankin, Front. Med. Chem. 2005, 2, 2 1.
[2] a) A. Coates, Y. Hu, C. Page, Nat. Rev. Drug Discovery 2002, 1,
895; b) T. C. Henninger, Expert Opin. Ther. Pat. 2003, 13, 787.
[3] a) F. Schlünzen, R. Zarivach, J. Harms, A. Bashan, A. Tocilj, R.
Albrecht, A. Yonath, F. Franceschi, Nature 2001, 413, 814;
b) J. L. Hansen, J. A. Ippolito, N. Ban, P. Nissen, P. B. Moore,
T. A. Steitz, Mol. Cell 2002, 10, 117; c) F. Schlünzen, J. M. Harms,
F. Franceschi, H. A. S. Hansen, H. Bartels, R. Zarivach, A.
Yonath, Structure 2003, 11, 329; d) R. Berisio, F. Schlünzen, J.
Harms, A. Bashan, T. Auerbach, D. Baram, A. Yonath, Nat.
Struct. Biol. 2003, 10, 366; e) R. Berisio, J. Harms, F. Schluenzen,
R. Zarivach, H. A. S. Hansen, P. Fucini, A. Yonath, J. Bacteriol.
2003, 185, 4276; f) D. Tu, G. Blaha, P. B. Moore, T. A. Steitz, Cell
2005, 121, 257.
[4] a) C. MØndez, J. A. Salas, Trends Biotechnol. 2001, 19, 449; b) E.
Rodriguez, R. McDaniel, Curr. Opin. Microbiol. 2001, 4, 52 6;
c) J. S. Thorson, T. J. Hosted, Jr., J. Jiang, J. B. Biggins, J. Ahlert,
Curr. Org. Chem. 2001, 5, 139; d) W. R. Strohl, Metab. Eng. 2001,
3, 4; e) U. Rix, C. Fischer, L. L. Remsing, J. Rohr, Nat. Prod. Rep.
2002, 19, 542; f) X. He, H.-w. Liu, Annu. Rev. Biochem. 2002, 71,
701; g) A. P. Salas, L. Zhu, C. Sµnchez, A. F. Braæa, J. Rohr, C.
MØndez, J. A. Salas, Mol. Microbiol. 2005, 58, 17.
[5] a) L. Zhao, D. H. Sherman, H.-w. Liu, J. Am. Chem. Soc. 1998,
120, 10256; b) L. Zhao, N. L. S. Que, Y. Xue, D. H. Sherman, H.-
w. Liu, J. Am. Chem. Soc. 1998, 120, 12159; c) L. Zhao, J. Ahlert,
Y. Xue, J. S. Thorson, D. H. Sherman, H.-w. Liu, J. Am. Chem.
Soc. 1999, 121, 9881; d) S. A. Borisova, L. Zhao, D. H. Sherman,
H.-w. Liu, Org. Lett. 1999, 1, 133; e) H. Yamase, L. Zhao, H.-w.
Liu, J. Am. Chem. Soc. 2000, 122, 12397; f) L. Zhao, S. Borisova,
S.-M. Yeung, H.-w. Liu, J. Am. Chem. Soc. 2001, 123, 7909.
[6] S. A. Borisova, L. Zhao, C. E. Melançon III, C.-L. Kao, H.-w.
Liu, J. Am. Chem. Soc. 2004, 126, 6534.
44 contains two potential glycosylation sites, the DesVII/
DesVIII system was regioselective for C5. Most importantly,
parallel assays lacking DesVIII again led to a dramatic
reduction in the yield of the glycosylated products. Such an
ability to utilize a non-natural aglycone and a non-natural
sugar in the coupling reaction is unusual for enzyme catalysis,
but appears to be more common among glycosyltransferases
involved in the biosynthesis of secondary metabolites.[4,5] The
demonstrated aglycone as well as sugar promiscuity of this
system presents an opportunity for macrolide glycodiversifi-
cation.
In summary, the in vitro DesVII/DesVIII characterization
described herein not only demonstrates its potential for
macrolactone glycodiversification,[26] but also further expands
our understanding of the DesVII/DesVIII glycosylation
machinery. Based on these studies, DesVII/DesVIII exhibits
a stringent 6-deoxysugar requirement but an otherwise
relaxed substrate specificity toward both TDP-sugar donor
and aglycone acceptor. The catalytic capabilities of DesVII/
DesVIII, as indicated by the formation of 19 previously
unreported macrolides in this limited exploration, hold high
promise in biosynthetic application to construct new macro-
lide derivatives. More importantly, these results reveal that
DesVIII equally augments DesVII activity toward both
aminosugars and non-aminosugars. The lack of preferential
aminosugar enhancement contrasts the previously proposed
“aminosugar-carrier” role for this intriguing protein. DesVIII
has also been speculated to play a role in the enhancement of
the aglycone–glycosyltransferase interaction considering the
high hydrophobic nature of the aglycones 2 and 3. However,
given the fact that the DesVIII augmentation effect holds for
both hydrophobic (such as 2 and 3) and more-hydrophilic
aglycones (such as 42 and 43), a specific “aglycone-carrier”
role for DesVIII may also be called into question. Since
DesVII shows good sequence homology to members of the
glycosyltransferase GT-B superfamily, which contain two
distinct domains for harboring the aglycone and TDP-sugar
substrate, it is more likely that binding of DesVIII to DesVII
may optimize a DesVII conformational change bringing these
two domains to close proximity during coupling, or may
simply facilitate the proper folding of DesVII and thereby
improve its catalytic efficiency. In fact, our preliminary
experiments showed that DesVIII is only required for initial
activation of DesVII and the activated DesVII can catalyze
the glycosyl transfer alone. Interestingly, a similar observation
was recently reported for activation of glycosyltransferase
EryCIII by DesVIII homologues EryCII and AknT.[7] The
authors proposed that auxiliary proteins induce a one-time
conformational change of glycosyltransferase to its active
form. Experiments are in progress to investigate further the
catalytic properties of DesVII and DesVIII.
[7] Y. Yuan, H. S. Chung, C. Leimkuhler, C. T. Walsh, D. Kahne, S.
Walker, J. Am. Chem. Soc. 2005, 127, 14128.
[8] a) H. C. Losey, M. W. Peczuh, Z. Chen, U. S. Eggert, S. D. Dong,
I. Pelczer, D. Kahne, C. T. Walsh, Biochemistry 2001, 40, 4745;
b) H. C. Losey, J. Jiang, J. B. Biggins, M. Oberthür, X. Y. Ye,
S. D. Dong, D. Kahne, J. S. Thorson, C. T. Walsh, Chem. Biol.
2002, 9, 1305; c) X. Fu, C. Albermann, J. Jiang, J. Liao, C. Zhang,
J. S. Thorson, Nat. Biotechnol. 2003, 21, 1467; d) T. L. Li, F.
Huang, S. F. Haydock, T. Mironenko, P. F. Leadlay, J. B. Spencer,
Chem. Biol. 2004, 11, 107; e) W. Lu, M. Oberthür, C. Leimkuh-
ler, J. Tao, D. Kahne, C. T. Walsh, Proc. Natl. Acad. Sci. USA
2004, 101, 4390; f) X. Fu, C. Albermann, C. Zhang, J. S. Thorson,
Org. Lett. 2005, 7, 1513.
[9] a) C. Albermann, A. Soriano, J. Jiang, H. Vollmer, J. B. Biggins,
W. A. Barton, J. Lesniak, D. B. Nikolov, J. S. Thorson, Org. Lett.
2003, 5, 933; b) C. L. Freel Meyers, M. Oberthür, J. W. Ander-
son, D. Kahne, C. T. Walsh, Biochemistry 2003, 42, 4179.
[10] C. Zhang, J. S. Thorson, unpublished results.
[11] a) A. Minami, R. Uchida, T. Eguchi, K. Kakinuma, J. Am. Chem.
Soc. 2005, 127, 6148; b) A. Minami, K. Kakinuma, T. Eguchi,
Tetrahedron Lett. 2005, 46, 6187.
[12] a) L. M. Quirꢀs, J. A. Salas, J. Biol. Chem. 1995, 270, 18234;
b) L. M. Quirꢀs, R. J. Carbajo, A. F. Braæa, J. A. Salas, J. Biol.
Chem. 2000, 275, 11713; c) H. Y. Lee, H. S. Chung, C. Hang, C.
Khosla, C. T. Walsh, D. Kahne, S. Walker, J. Am. Chem. Soc.
2004, 126, 9924; d) M. Yang, M. R. Proctor, D. N. Bolam, J. C.
Errey, R. A. Field, H. J. Gilbert, B. G. Davis, J. Am. Chem. Soc.
2005, 127, 9336.
Received: September 8, 2005
Revised: January 18, 2006
Published online: March 15, 2006
[13] W. Lu, C. Leimkuhler, M. Oberthür, D. Kahne, C. T. Walsh,
Biochemistry 2004, 43, 4548.
Keywords: antibiotics · biosynthesis · carbohydrates ·
glycosylation · macrolides
[14] a) C. E. Melançon III, H. Takahashi, H.-w. Liu, J. Am. Chem.
Soc. 2004, 126, 16726; b) W. Lu, C. Leimkuhler, G. J. J. Gatto,
.
2752
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 2748 –2753