30
LETTERS
SYNLETT
Acknowledgments. This work is supported by the State Science and
Technology Committee of China. B. Yu thank Chinese Academy of
Sciences and the National Education Committee of China for partial
financial support, thank Prof. Long Lü for his helpful discussion.
34, 6929. (c) Nakayama, K.; Uoto, K.; Higashi, K.; Soga, T.;
Kusama, T. Chem. Pharm. Bull. 1992, 40, 1718. (d) Ogawa, T.;
Nakabayashi, S. Carbohydr. Res. 1981, 93, C1. (e) Guibe. F.;
Saint, M. Y. Tetrahedron Lett. 1981, 22, 3591. (f) Gigg, R.; J.
Chem. Soc. Perkin Trans. 1 1980, 738. (g) Carless, H. A. J.;
Haywood, D. J. J. Chem. Soc., Chem. Common. 1980, 980.
(h) Boss, R.; Scheffold, R. Angew. Chem., Int. Ed. Engl. 1976, 15,
558.
References and Notes:
1.
(a) Synthetic Oligosaccharides, Indispensable Probes for the Life
Science; Kovac, P. Ed.; ACS Symposium Series 560: American
Chemical Society: Washington, DC, 1994. (b) Varki, A.
Glycobiology 1993, 3, 97. (c) Dwek, R. A. Chem. Rev. 1996, 96,
683.
17. (a) Corey, E. J.; Suggs, J. W. J. Org. Chem. 1973, 38, 3223. (b)
Boons, G.-J. J. Chem. Soc., Chem. Common. 1996, 141.
18. (a) Bandry, D.; Ephritihine, M.; Felkin, H. J. Chem. Soc., Chem.
Common. 1978, 694. (b) Oltvoort, J. J.; Van Boechel, C. A. A.; de
Koning, J. H.; Van Boom, J. H. Synthesis, 1981, 305.
2.
(a) Paulsen, H. Angew. Chem., Int. Ed. Engl. 1982, 21, 155.
(b) Schmidt, R. R. ibid. 1986, 25, 212. (c) Toshima, K.; Tatsuta,
K. Chem. Rev. 1993, 93, 1503. (d) Ogawa, T. Chem. Soc. Rev.
1994, 397. (e) Boons, G.-J. Comtemporary Organic Synthesis
1995, 173.
19. (a) Lüning, J.; Möller, U.; Debski, N.; Welzel, P. Tetrahedron
Lett. 1993, 34, 5871. (b) Mostowicz, D.; Chmielewski, M. Polish.
J. Chem. 1993, 67, 1235.
20. Herein, I(CF ) Cl (n = 2, 6) were gifts from Prof. L. Lü. When
3.
4.
5.
6.
7.
8.
9.
for an example see: Cheng, M. K.; Douglas, N. L.; Hinzen, B.;
Ley, S. V.; Pannecoucke, X. Synlett 1997, 257
2 n
perfluoroalkylated with I(CF ) Cl, the corresponding products
2 2
have the same R as that of the starting allyl glycosides, therefore
f
Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem., Int. Ed. Engl.
1996, 35, 1380.
the reaction can not be monitored by TLC. Several other
perfluoroalkyl iodides are available in Aldrich catalog.
Fraser-Reid, B.; Wu, Z.; Andrews, C. W.; Skowronski, E.;
Browen, J. P. J. Am. Chem. Soc. 1991, 113, 1434.
21. Typical procedure: To a stirred solution of 1a (200 mg, 0.39
mmol) and I(CF ) Cl (180 mg, 1.0equiv) in CH CN (12 mL), was
2 6
3
Boons, G.-J.; Heskamp, B.; Hout, F. Angew. Chem., Int. Ed. Engl.
1996, 35, 2845.
added H O (3 mL) at rt, the mixture turned to be an emulsion, to
2
which a mixture of Na S O (335 mg, 5.0 equiv) and NaHCO
3
2
2
4
Garcia, B. A.; Poole, J. L.; Gin, D. Y. J. Am. Chem. Soc. 1997,
119, 7597 and the references cited therein.
(162 mg, 5.0 equiv) was added. After being stirred at rt for 30
min, the mixture was diluted with EtOAc (50 mL), the organic
layer separated was washed with brine twice, dried over
Kondo, H.; Aoki, S.; Ichikawa, Y.; Halcomb, R. L.; Ritzen, H.;
Wong, C. H. J. Org. Chem. 1994, 59, 864.
anhydrous Na SO and concentrated. The residue was
2
4
chromatoghaphed on a silica gel column to give 1b (96%) or
For an example see: Windmüller, R.; Schmidt, R. R. Tetrahedron
Lett. 1994, 35, 7927.
directly treated with Zn powder (125 mg, 5.0 equiv) and NH Cl
4
(40 mg, 2.0 equiv) in absolute EtOH, after being refluxed for 5
min, the mixture was cooled to rt, filtered and concentrated. Flash
10. For an example see: Tietze, L. F.; Keim, H. Angew. Chem., Int.
Ed. Engl. 1997, 36, 1615.
chromatography of the residue on a silica gel column afforded 1c
11. For an example see: Sugimoto, M.; Fujikura, K.; Nunomura, S.;
1
(85%, based on 1a). 1b: H NMR (300 MHz, CDCl ): δ 8.05 (m,
3
Ito, Y.; Ogawa, T. Tetrahedron Lett. 1990, 31, 1435.
4H, Ar), 7.50 (m, 4H, Ar), 7.38 (m, 7H, Ar), 6.20 and 6.14 (2(t,
1H, J = 9.7, H-3’), 5.64 and 5.62 (2 x s, 1H, PhCH), 5.36(m, 1H,
12. Goto, F.; Ogawa, T. Pure Appl. Chem. 1993, 65, 793.
13. For an example see: Yamada, H.; Harada, T.; Takahashi, T. J. Am.
Chem. Soc. 1994, 116, 7917.
H-2’), 4.46-3.70 (m, 8H), 3.05 and 2.75 (2 x m, 2H, H-3) ppm;
19
F NMR (TFA as a standard): δ 68.8 (s, 2F, ClCF ), 112.8 (s, 2F,
2
+
CH CF ), 119.2-121.4 (m, 8F) ppm; EIMS (m/z): 978 (M ), 930,
830, 696, 506, 105 (100%). 1c: H NMR (CDCl ): δ 8.00 and 7.40
14. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic
Synthesis; Wiley: New York, 1991; p42.
2
2
1
3
(m, 15H, Ar), 6.13 (t, 0.75H, J = 9.8, H-3α), 5.85 (t, 0.25H, J =
9.7, H-3β), 5.68 (d, 0.75H, J = 3.4, H-1α), 5.56 (s, 0.75H,
PhCHα), 5.53 (s, 0.25H, PhCHβ), 5.30 (m, 1.25H, H-2, H-1β),
4.35 (m, 2H), 3.90 (m, 2H) ppm; EIMS (m/z): 476 (M ), 459, 353,
327, 105 (100%).
15. Recent examples on the deallylation see: (a) Thomas, R. M.;
Mohan, G. H.; Iyengar, D. S. Tetrahedron Lett. 1997, 38, 4721.
(b) Lee, J.; Cha, J. K. ibid. 1996, 37, 3663. (c) Yadav, J. S.;
Chandrasekhar, S.; Sumithra, Sumithre, G; Kacke, R. ibid. 1996,
37, 6603. (d) Diaz, R. R.; Melagatejo, C. R.; Espinosa, M. T. P.
L.; Cubero, I. I. J. Org. Chem. 1994, 59, 7928. (e) Ito, H.;
Taguchi, T.; Hanzawa, Y. ibid. 1993, 58, 774.
+
22. Huang, W. Y. J. Fluoro. Chem. 1992, 58, 1.
23. Studer, A.; Hadida, S.; Ferritto, R.; Kim, S.-Y.; Jegar, P.; Wipf,
P.; Curran, D. P. Science, 1997, 275, 823.
16. (a) Beugelmans, R.; Bourdet, S.; Bigot, A.; Zhu, J. Tetrahedron
Lett. 1994, 35, 4349. (b) Mereyala, H. B.; Guntha, S. ibid. 1993,