10.1002/anie.201710517
Angewandte Chemie International Edition
COMMUNICATION
J. Winsberg, T. Hagemann, T. Janoschka, M. D. Hager, U. S.
Schubert, Angew. Chem. Int. Ed. 2016, 56, 686-711.
framework was inserted into the two pyridinium moieties to
adjust the electrochemistry of viologen while a highly hydrophilic
3-(trimethylaminium)propyl group was introduced to the
hydrophobic Py2TTz skeleton to improve solubility in water. The
[2]
(a) B. Huskinson, M. P. Marshak, C. Suh, S. Er, M. R.
Gerhardt, C. J. Galvin, X. Chen, A. Aspuru-Guzik, R. G.
Gordon, M. J. Aziz, Nature 2014, 505, 195-198; (b) T. Liu, X.
Wei, Z. Nie, V. Sprenkle, W. Wang, Adv. Energy Mater. 2016,
6, 1501449; (c) K. Lin, R. Gómez-Bombarelli, E. S. Beh, L.
Tong, Q. Chen, A. Valle, A. Aspuru-Guzik, M. J. Aziz, R. G.
Gordon, Nat. Energy 2016, 1, 16102; (d) Y. Ding, Y. Li, G. Yu,
Chem 2016, 1, 790-801; (e) T. Janoschka, N. Martin, U. Martin,
C. Friebe, S. Morgenstern, H. Hiller, M. D. Hager, U. S.
Schubert, Nature 2015, 527, 78-81; (f) T. Janoschka, N. Martin,
M. D. Hager, U. S. Schubert, Angew. Chem. Int. Ed. 2016, 55,
14427-14430; (g) D. Rueda-García, D. P. Dubal, F. Huguenin,
P. Gómez-Romero, J. Power Sources 2017, 350, 9-17; (h) B.
Hu, C. Seefeldt, C. DeBruler, T. Liu, J. Mater. Chem. A 2017,
5, 22137-22145. ; (i) J. Luo, A. Sam, B. Hu, C. DeBruler, X.
Wei, W. Wang, T. L. Liu, Nano Energy 2017, 42, 215-221; (j) E.
S. Beh, D. De Porcellinis, R. L. Gracia, K. T. Xia, R. G. Gordon,
M. J. Aziz, ACS Energy Lett. 2017, 2, 639-644; (k) X. Wei, W.
Xu, M. Vijayakumar, L. Cosimbescu, T. Liu, V. Sprenkle, W.
Wang, Adv. Mater. 2014, 26, 7649-7653; (l) X. Wei, W. Xu, J.
Huang, L. Zhang, E. Walter, C. Lawrence, M. Vijayakumar, W.
A. Henderson, T. Liu, L. Cosimbescu, B. Li, V. Sprenkle, W.
Wang, Angew. Chem. Int. Ed. 2015, 54, 8684-8687; (m) J.
Huang, L. Cheng, R. S. Assary, P. Wang, Z. Xue, A. K. Burrell,
L. A. Curtiss, L. Zhang, Adv. Energy Mater. 2015, 5, 1401782;
(n) C. S. Sevov, D. P. Hickey, M. E. Cook, S. G. Robinson, S.
Barnett, S. D. Minteer, M. S. Sigman, M. S. Sanford, J. Am.
Chem. Soc. 2017, 139, 2924-2927; (o) Y. G. Zhu, Y. Du, C. Jia,
M. Zhou, L. Fan, X. Wang, Q. Wang, J. Am. Chem. Soc. 2017,
139, 6286-6289; (p) G. Cong, Y. Zhou, Z. Li, Y.-C. Lu, ACS
Energy Lett. 2017, 2, 869-875.
synthesis of [(NPr)2TTz]Cl4 was demonstrated through
straightforward reaction route from the commercially available
reagents with satisfactory isolated yield. [(NPr)2TTz]Cl4
a
a
exhibits a high solubility in water, reversible electrochemical
behaviors, and fast electron transfer rate constants. Paired with
the cathodic compound, NMe-TEMPO, the [(NPr)2TTz]Cl4 / NMe
-
TEMPO flow battery enables a 1.44 V battery voltage with a
theoretical energy density of 53.7 Wh/L. The demonstration of
[(NPr)2TTz]Cl4 / NMe-TEMPO cell delivered outstanding battery
performance, specifically, 70 % energy efficiency and 99.97 %
capacity retention per cycle. The results confirm the reliability of
the strategy of extending the π-conjugation of viologen
molecules to obtain new redox active compounds for the
AORFB application. It is anticipated that the concept of “π-
conjugation extension” can be also applied with other redox
active molecules and lead to the discovery of novel RFB
chemistry.
Supporting Information contains experimental details and
additional figures and tables. Supporting Information is available
from the Wiley Online Library or from the author.
Acknowledgements We thank Utah State University for
providing faculty startup funds to the PI (T. Leo Liu) and the
Utah Science Technology and Research initiative (USTAR)
UTAG award for supporting this study. Bo Hu is grateful for
China CSC Abroad Studying Fellowship and Utah Energy
Triangle Student Award supported by the Office of Energy of the
Utah State government, respectively. Camden DeBruler is
grateful for his USU Presidential Doctoral Research Fellowship
(PDRF) supported by USU.
[3]
(a) E. J. Son, J. H. Kim, K. Kim, C. B. Park, J Mater Chem A
2016, 4, 11179-11202; (b) K. Lin, Q. Chen, M. R. Gerhardt, L.
Tong, S. B. Kim, L. Eisenach, A. W. Valle, D. Hardee, R. G.
Gordon, M. J. Aziz, M. P. Marshak, Science 2015, 349, 1529-
1532; (c) A. Orita, M. G. Verde, M. Sakai, Y. S. Meng, Nat
Commun 2016, 7, 13230; (d) M. R. Gerhardt, L. Tong, R.
Gómez-Bombarelli, Q. Chen, M. P. Marshak, C. J. Galvin, A.
Aspuru-Guzik, R. G. Gordon, M. J. Aziz, Adv. Energy Mater.
2017, 7, 1601488-n/a; (e) B. Yang, L. Hoober-Burkhardt, S.
Krishnamoorthy, A. Murali, G. K. S. Prakash, S. R. Narayanan,
J. Electrochem. Soc. 2016, 163, A1442-A1449.
Keywords: “Extended viologen”
Molecular engineering • TEMPO
• Redox flow battery •
[4]
[5]
C. L. Bird, A. T. Kuhn, Chem. Soc. Rev. 1981, 10, 49-82.
(a) Kazuko Takahashi, Takayasu Nihira, Kimio Akiyama,
Yusaku Ikegami, E. Fukuyo, J. Chem. Soc., Chem. Commun.
1992, 620-622; (b) William W. Porter III, Thomas P. Vaid, A. L.
Rheingold, J. Am. Chem. Soc. 2005, 16559-16566.
[1]
(a) Z. Yang, J. Zhang, M. C. Kintner-Meyer, X. Lu, D. Choi, J.
P. Lemmon, J. Liu, Chem Rev 2011, 111, 3577-3613; (b) W.
Wang, Q. Luo, B. Li, X. Wei, L. Li, Z. Yang, Adv. Funct. Mater.
2013, 23, 970-986; (c) G. L. Soloveichik, Chem Rev 2015, 115,
11533-11558; (d) Q. Huang, Q. Wang, ChemPlusChem 2015,
80, 312-322; (e) P. Leung, A. A. Shah, L. Sanz, C. Flox, J. R.
Morante, Q. Xu, M. R. Mohamed, C. Ponce de León, F. C.
Walsh, J. Power Sources 2017, 360, 243-283; (f) X. Wei, W.
Pan, W. Duan, A. Hollas, Z. Yang, B. Li, Z. Nie, J. Liu, D. Reed,
W. Wang, V. Sprenkle, ACS Energy Lett. 2017, 2187-2204; (g)
[6] Masato Nanasawa, Makio Miwa, Michiko Hirai, T. Kuwabara, J.
Org. Chem. 2000, 593-595.
[7]
[8]
[9]
Gianna Reginato, Alessandro Mordini, Lorenzo Zani, Massimo
Calamante, A. Dessì, Eur. J. Org. Chem. 2016, 233–251.
A. N. Woodward, J. M. Kolesar, S. R. Hall, N.-A. Saleh, D. S.
Jones, M. G. Walter, J. Am. Chem. Soc. 2017, 139, 8467-8473.
S. Er, C. Suh, M. P. Marshak, A. Aspuru-Guzik, Chem. Sci.
2015, 6, 885-893.
This article is protected by copyright. All rights reserved.