Journal of the American Chemical Society
COMMUNICATION
In conclusion, we have generated a MnV(O) π-cation radical
complex and shown that it is a more reactive oxidant for OAT
reactions than its one-electron-reduced analogue. Our experi-
mental data and theoretical calculations are in excellent agree-
ment and point to a concerted OAT mechanism for both cationic
and neutral oxidants. A recent study of MnV(O) corroles and
OAT to sulfides invoked a disproportionation mechanism to give
a more reactive MnVI(O)(corrole) as the primary oxidant,
although no direct evidence for this complex was presented.24,25
While we found no evidence for the MnVI oxidation state, our
results indicate that the isoelectronic species MnV(O)(Cz+•) is
indeed a reactive oxidant. In relating our findings to the relative
reactivity of Cpd-I versus Cpd-II in heme enzymes and models,
we suggest that a simple advantage in electrophilicity for Cpd-I
may play a significant role in determining the greater reactivity
usually associated with this species. Further work is necessary to
determine the relative reactivity of 2 versus 2+ in other oxidative
transformations of biological and catalytic relevance.
C. V.; Lee, J.; Oh, K.; Lee, Y. J.; Lee, J.; Jackson, T. A.; Ray, K.; Hirao, H.;
Shin, W.; Halfen, J. A.; Kim, J.; Que, L., Jr.; Shaik, S.; Nam, W. Proc. Natl.
Acad. Sci. U.S.A. 2007, 104, 19181. (f) Wang, D.; Zhang, M.; Buhlmann,
P.; Que, L., Jr. J. Am. Chem. Soc. 2010, 132, 7638. (g) Miller, C. G.; Gordon-
Wylie, S. W.; Horwitz, C. P.; Strazisar, S. A.; Peraino, D. K.; Clark, G. R.;
Weintraub, S. T.; Collins, T. J. J. Am. Chem. Soc. 1998, 120, 11540.
(6) (a) Groves, J. T.; Lee, J.; Marla, S. S. J. Am. Chem. Soc. 1997,
119, 6269. (b) Song, W. J.; Seo, M. S.; George, S. D.; Ohta, T.; Song, R.;
Kang, M. J.; Tosha, T.; Kitagawa, T.; Solomon, E. I.; Nam, W. J. Am.
Chem. Soc. 2007, 129, 1268. (c) Nam, W.; Kim, I.; Lim, M. H.; Choi, H. J.;
Lee, J. S.; Jang, H. G. Chem.—Eur. J. 2002, 8, 2067. (d) Jin, N.; Ibrahim,
M.; Spiro, T. G.; Groves, J. T. J. Am. Chem. Soc. 2007, 129, 12416.
(7) (a) Altun, A.; Shaik, S.; Thiel, W. J. Am. Chem. Soc. 2007,
129, 8978. (b) Tahsini, L.; Bagherzadeh, M.; Nam, W.; de Visser, S. P.
Inorg. Chem. 2009, 48, 6661. (c) Latifi, R.; Tahsini, L.; Karamzadeh, B.;
Safari, N.; Nam, W.; de Visser, S. P. Arch. Biochem. Biophys. 2011, 507, 4.
(d) MetalꢀOxo and MetalꢀPeroxo Species in Catalytic Oxidations;
Meunier, B., Ed.; Springer: Berlin, 2000. (e) McLain, J.; Lee, J.; Groves,
J. T. In Biomimetic Oxidations; Meunier, B., Ed.; Imperial College Press:
London, 1999; pp 91ꢀ170.
(8) For a related study, see: Pan, Z.; Wang, Q.; Sheng, X.; Horner,
J. H.; Newcomb, M. J. Am. Chem. Soc. 2009, 131, 2621.
’ ASSOCIATED CONTENT
(9) (a) Mandimutsira, B. S.; Ramdhanie, B.; Todd, R. C.; Wang, H.;
Zareba, A. A.; Czernuszewicz, R. S.; Goldberg, D. P. J. Am. Chem. Soc.
2002, 124, 15170. (b) Lansky, D. E.; Mandimutsira, B.; Ramdhanie,
B.; Clausen, M.; Penner-Hahn, J.; Zvyagin, S. A.; Telser, J.; Krzystek,
J.; Zhan, R.; Ou, Z.; Kadish, K. M.; Zakharov, L.; Rheingold, A.
L.; Goldberg, D. P. Inorg. Chem. 2005, 44, 4485. (c) Lansky, D. E.;
Goldberg, D. P. Inorg. Chem. 2006, 45, 5119. (d) Prokop, K. A.; de
Visser, S. P.; Goldberg, D. P. Angew. Chem., Int. Ed. 2010, 49, 5091.
(10) Connelly, N. G.; Geiger, W. E. Chem. Rev. 1996, 96, 877.
(11) (a) Simkhovich, L.; Mahammed, A.; Goldberg, I.; Gross, Z.
Chem.—Eur. J. 2001, 7, 1041. (b) Goldberg, I.; Meier-Callahan, A. E.; Di
Bilio, A. J.; Simkhovich, L.; Mahammed, A.; Gray, H. B.; Gross, Z. Inorg.
Chem. 2001, 40, 6788.
S
Supporting Information. Experimental procedures, Fig-
b
ures S1ꢀS15, and computational details. This material is avail-
’ AUTHOR INFORMATION
Corresponding Author
sam.devisser@manchester.ac.uk; dpg@jhu.edu
’ ACKNOWLEDGMENT
This work was supported by the NSF (CHE0909587) to D.P.G.
and the Harry and Cleio Greer Fellowship to K.A.P. S.P.d.V. thanks
the National Service of Computational Chemistry Software for CPU
time and the University of Manchester for a travel grant. We thank R.
Czernuszewicz for useful discussions.
(12) Gross, Z. J. Biol. Inorg. Chem. 2001, 6, 733.
(13) (a) de Visser, S. P. J. Am. Chem. Soc. 2010, 132, 1087. (b)
Kumar, D.; Karamzadeh, B.; Sastry, G. N.; de Visser, S. P. J. Am. Chem.
Soc. 2010, 132, 7656.
(14) (a) Ghosh, A.; Wondimagegn, T.; Parusel, A. B. J. J. Am. Chem.
Soc. 2000, 122, 5100. (b) Gross, Z.; Barzilay, C. Angew. Chem., Int. Ed.
Engl. 1992, 31, 1615. (c) Barzilay, C. M.; Sibilia, S. A.; Spiro, T. G.;
Gross, Z. Chem.—Eur. J. 1995, 1, 222.
’ REFERENCES
(15) Czarnecki, K.; Nimri, S.; Gross, Z.; Proniewicz, L. M.; Kincaid,
J. R. J. Am. Chem. Soc. 1996, 118, 2929.
(16) Macor, K. A.; Czernuszewicz, R. S.; Spiro, T. G. Inorg. Chem.
1990, 29, 1996.
(17) Fukuzumi, S.; Kotani, H.; Prokop, K. A.; Goldberg, D. P. J. Am.
(1) (a) Sono, M.; Roach, M. P.; Coulter, E. D.; Dawson, J. H. Chem. Rev.
1996, 96, 2841. (b) Groves, J. T. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 3569.
(c)Denisov, I. G.;Makris, T. M.;Sligar, S. G.;Schlichting, I.Chem. Rev. 2005,
105, 2253. (d) Cytochrome P450: Structure, Mechanism and Biochemistry,
3rd ed.; Ortiz de Montellano, P. R., Ed.; Kluwer Academic/Plenum Publishers:
New York, 2004. (e) Rittle, J.; Green, M. T. Science 2010, 330, 933.
(f) Dunford, H. B. Heme Peroxidases; Wiley-VCH: New York, 1999.
(2) (a) Bruijnincx, P. C.; van Koten, G.; Klein Gebbink, R. J. Chem.
Soc. Rev. 2008, 37, 2716. (b) Krebs, C.; Galoniꢀc Fujimori, D.; Walsh,
C. T.; Bollinger, J. M., Jr. Acc. Chem. Res. 2007, 40, 484. (c) Que, L., Jr.
Acc. Chem. Res. 2007, 40, 493. (d) Solomon, E. I.; Brunold, T. C.; Davis,
M. I.; Kemsley, J. N.; Lee, S. K.; Lehnert, N.; Neese, F.; Skulan, A. J.;
Yang, Y. S.; Zhou, J. Chem. Rev. 2000, 100, 235. (e) Ryle, M. J.;
Hausinger, R. P. Curr. Opin. Chem. Biol. 2002, 6, 193.
Chem. Soc. 2011, 133, 1859.
(18) The origin of the large magnitude of ΔSq for 2+ is unknown, but
for a comparable value, see: Costas, M.; Garcia-Bosch, I.; Company, A.;
Cady, C. W.; Styring, S.; Browne, W. R.; Ribas, X. Angew. Chem., Int. Ed.
2011, 50, 5647.
(19) Kumar, D.; Sastry, G. N.; de Visser, S. P. Chem.—Eur. J. 2011,
17, 6196.
(20) (a) Holm, R. H.; Tucci, G. C.; Donahue, J. P. Inorg. Chem. 1998,
37, 1602. (b) Shaik, S.; Kang, Y.; Chen, H.; Jeong, Y. J.; Lai, W.; Bae,
E. H.; Nam, W. Chem.—Eur. J. 2009, 15, 10039.
(3) Nam, W. Acc. Chem. Res. 2007, 40, 522.
(21) It should be noted that the kinetics of OAT and the driving
force are not easily correlated. See: Abu-Omar, M. M.; Appelman, E. H.;
Espenson, J. H. Inorg. Chem. 1996, 35, 7751.
(22) Seymore, S. B.; Brown, S. N. Inorg. Chem. 2000, 39, 325.
(23) DuMez, D. D.; Mayer, J. M. Inorg. Chem. 1998, 37, 445.
(24) Kumar, A.; Goldberg, I.; Botoshansky, M.; Buchman, Y.; Gross,
Z. J. Am. Chem. Soc. 2010, 132, 15233.
(4) (a) McEvoy, J. P.; Brudvig, G. W. Chem. Rev. 2006, 106, 4455.
(b) Betley, T. A.; Wu, Q.; Van Voorhis, T.; Nocera, D. G. Inorg. Chem.
2008, 47, 1849. (c) Umena, Y.; Kawakami, K.; Shen, J. R.; Kamiya, N.
Nature 2011, 473, 55.
(5) For examples, see: (a) Parsell, T. H.; Yang, M. Y.; Borovik, A. S.
J. Am. Chem. Soc. 2009, 131, 2762. (b) Yin, G. C.; Danby, A. M.; Kitko,
D.; Carter, J. D.; Scheper, W. M.; Busch, D. H. J. Am. Chem. Soc. 2007,
129, 1512. (c) Arunkumar, C.; Lee, Y. M.; Lee, J. Y.; Fukuzumi, S.; Nam,
W. Chem.—Eur. J. 2009, 15, 11482. (d) Kurahashi, T.; Kikuchi, A.;
Shiro, Y.; Hada, M.; Fujii, H. Inorg. Chem. 2010, 49, 6664. (e) Sastri,
(25) For the generation of a (nitrido)manganese(VI) corrole, see:
Golubkov, G.; Gross, Z. J. Am. Chem. Soc. 2005, 127, 3258.
15877
dx.doi.org/10.1021/ja2066237 |J. Am. Chem. Soc. 2011, 133, 15874–15877