Catalysis Science & Technology
Page 6 of 8
ARTICLE
DOI: 10.1039/C3CY01033C
al. also proposed that the presence of H2 promoted activation of
O2 to OOH species over AgꢀMFI, the occurrence of which is
crucial for the partial oxidation of C3H8.11 In our case, it is
possible that reactive oxygen species mentioned above would
be produced in the presence of H2, and then triggered the
formation of enolic species during partial oxidation of
hydrocarbons having more than one carbon atom over
Ag/Al2O3.
It has been widely accepted that the structure of
hydrocarbons has a great influence on the activity of Ag/Al2O3
for NOx reduction.1,4 As for NO reduction by various alkanes
over Ag catalysts, Satsuma and coꢀworkers found that both the
reaction rates of NO and hydrocarbons had good correlations
with mean bond energy of the alkanes, which is an average of
all CꢀH and CꢀC bond energies in the hydrocarbons.4,42 Further
research achieved by in situ DRIFTS experiments revealed that
these correlations could be rationalized by the reaction rate of
the formation of surface oxygenated species such as acetate,
which was significantly promoted by the presence of H2.4,12 In
our cases, the intrinsic properties of the employed hydrocarbons,
such as carbon number, CꢀH and CꢀC bond energies, the
8. F. Klingstedt, K. Arve, K. Eränen and D.Y. Murzin, Acc. Chem. Res.
,
2006, 39, 273.
9. P. Sazama and B. Wichterlová, Chem. Commun., 2005, 4810.
10. J.P. Breen and R. Burch, Top. Catal., 2006, 39, 53.
11. K. Shimizu, K. Sawabe and A. Satsuma, Catal. Sci. Technol., 2011,
, 331.
12. J. Shibata, K. Shimizu, S. Satokawa, A. Satsuma and T. Hattori,
Phys. Chem. Chem. Phys., 2003, , 2154.
1
5
13. K. Shimizu, M. Tsuzuki, K. Kato, S. Yokata, K. Okumura and A.
Satsuma, J. Phys, Chem. C, 2007, 111, 950.
14. P.S. Kim, M.K. Kim, B.K. Cho, I.S. Nam and S.H. Oh, J. Catal.
,
,
2013, 301, 65.
15. J.P. Breen, R. Burch, C. Hardacre and C.J. Hill, J. Phys. Chem. B
2005, 109, 4805.
16. B. Wichterlová, P. Sazama, J.P. Breen, R. Burch, C.J. Hill, L. Čapek
and Z. Sobalík, J. Catal., 2005, 235, 195.
17. P. Sazama, L. Čapek, H. Drobná, Z. Sobalík, J. Dĕdeček, K. Arve
and B. Wichterlová, J. Catal., 2005, 232, 302.
adsorption enthalpy of hydrocarbons, and so on, may 18. S.T. Korhonen, A.M. Beale, M.A. Newton and B.M. Weckhuysen, J.
contributed to the formation of enolic species, and to the
promotion of H2 on enolic species formation.
Phys. Chem. C, 2011, 115, 885.
19. U. Bentrup, M. Richter and R. Fricke, Appl. Catal. B, 2005, 55, 213.
20. X.L. Zhang, Y.B. Yu and H. He, Appl. Catal. B, 2007, 76, 241.
21. Y.B. Yu, H. He, Q.C. Feng, H.W. Gao and X. Yang, Appl. Catal. B
2004, 49, 159.
5. Conclusions
,
NOx reduction by hydrocarbons containing twoꢀ or threeꢀ
carbon atoms was clearly promoted by H2 at low temperatures, 22. Y.B. Yu, X.P. Song and H. He, J. Catal., 2010, 271, 343.
while this promotion effect of H2 did not occur during the CH4–
SCR over Ag/Al2O3. In situ DRIFTS spectra identified that the
formation of enolic species was triggered by H2 addition during
the oxidation of the hydrocarbons containing two or three
carbons at low temperatures, while the enolic species was
hardly observed during CH4 oxidation. The stronger the
promotion effect of H2 on enolic species formation, the more
significant the enhancement of NOx conversion is, confirming
the crucial role of enolic species in H2ꢀassisted HCꢀSCR, and
thus creating an effective pathway for NOx reduction.
23. Y. Yan, Y.B. Yu, H. He and J.J. Zhao, J. Catal., 2012, 293, 13.
24. Y.B. Yu, H. He and Q.C. Feng, J. Phys. Chem. B, 2003, 107, 13090.
25. A. Takahashi, M. Haneda, T. Fujitani and H. Hamada, J. Mol. Catal.
, 2007, 261, 6.
A
26. Q. Yu, X. Wang, N. Xing, H. Yang and S. Zhang, J. Catal., 2007,
245, 124.
27. C.A. Taatjes, N. Hansen, A. McIlroy, J.A. Miller, J.P. Senosiain, S.J.
Klippenstein, F. Qi, L.S. Sheng, Y.W. Zhang, T.A. Cool, J. Wang, P.
R. Westmoreland, M.E. Law, T. Kasper and K. KohseꢀHoinghaus,
Science, 2005, 308, 1887.
Acknowledgements
28. G.N. Vayssilov, M. Mihaylov, P.St. Petkov, K.I. Hadjiivanov and
K.M. Neyman, J. Phys. Chem. C, 2011, 115, 23435.
29. F.C. Meunier, J.P. Breen, V. Zuzaniuk, M. Olsson and J.R.H. Ross, J.
Catal., 1999, 187, 493.
The authors thank the support from the National Natural
Science Foundation of China (21177142, 21373261) and the
National High Technology Research and Development Program
of China (2013AA065301).
30. K. Shimizu, J. Shibata, H. Yoshida, A. Satsuma and T. Hattori, Appl.
Catal. B, 2001, 30, 151.
Notes and references
31. M.I. Zaki, M.A. Hasan and L. Pasupulety, Langmuir, 2001,17, 768.
32. J. Sirita, S. Phanichphant and F.C. Meunier, Anal. Chem., 2007, 79
,
Research Center for EcoꢁEnvironmental Sciences, Chinese Academy of
Sciences, 18 Shuangqing Road, Beijing 100085 , China. Fax: (+86) 10ꢁ
62849123; Tel: (+86) 10ꢁ62849123; Eꢁmail:honghe@rcees.ac.cn
3912.
33. A. IglesiasꢀJuez, A.B. Hungría, A. MartínezꢀArias, A. Fuerte, M.
FernándezꢀGarcía, J.A. Anderson, J.C. Conesa and J. Soria, J. Catal.
,
†
Electronic Supplementary Information (ESI) available: details of
2003, 217, 310.
GC–MS analysis, and DRIFTS studies. See DOI: 10.1039/b000000x/
1. R. Burch, J.P. Breen and F.C. Meunier, Appl. Catal. B, 2002, 39, 283.
2. H. He and Y.B. Yu, Catal. Today, 2005, 100, 37.
34. S. Tamm, H.H. Ingelsten and A.E.C. Palmqvist, J. Catal., 2008, 255
,
304.
35. S. Chansai, R. Burch, C. Hardacre, J. Breen and F. Meunier, J.
Catal., 2010, 276, 49.
3. P. Granger and V.I. Parvulescu, Chem. Rev., 2011, 111, 3155.
4. K. Shimizu and A. Satsuma, Phys. Chem. Chem. Phys., 2006,
2677.
8,
36. S. Kameoka, Y. Ukisu and T. Miyadera, Phys. Chem. Chem. Phys,
2000, 2, 367.
5. Z. Liu and S.I. Woo, Catal. Rev., 2006, 48, 43.
6. Z.M. Liu, J.H. Li and A.S.M. Junaid, Catal. Today, 2010, 153, 95.
7. S. Satokawa, Chem. Lett., 2000, 294.
37. F. ThibaultꢀStarzyk, E. Seguin, S. Thomas, M. Daturi, H. Arnolds
and D.A. King, Science, 2009, 324, 1048.
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 2012