Reduction of CCl4 by Zero-Valent Fe
J. Phys. Chem. B, Vol. 102, No. 8, 1998 1465
(29) Ryan, M. P.; Newman, R. C.; Thompson, G. E. J. Electrochem.
Soc. 1995, 142, L177.
The addition of isopropyl alcohol dramatically increased the
rate of reduction of CCl4 by zero-valent iron in the light. This
is due to the generation of the R-hydroxyalkyl radical (CH3)2-
(‚C)OH, which reduced the CCl4 to ‚CCl3. Under these
conditions, HCCl3 was a significant product because of H atom
abstraction from (CH3)2CHOH. This result suggests that the
presence of H atom donors (including dissolved organic matter
or organic buffers) may shift product distribution toward HCCl3,
whenever ‚CCl3 is an intermediate. In this way, secondary
components (in laboratory solutions as well as ground water)
may affect product distributions to a greater degree than is
generally recognized.
(30) Oblonsky, L. J.; Davenport, A. J.; Ryan, M. P.; Isaacs, H. S.;
Newman, R. C. J. Electrochem. Soc. 1997, 144, 2398.
(31) Cahan, B. D.; Chen, C.-T. J. Electrochem. Soc. 1982, 129, 921.
(32) Odziemkowski, M. S.; Gillham, R. W. DiVision of EnVironmental
Chemistry, Extended Abstracts; 213th American Chemical Society National
Meeting, San Francisco, CA, 1997, Vol. 37, p 177.
(33) Schmuki, P.; Bo¨hni, H. Electrochim. Acta 1995, 40, 775.
(34) Abrantes, L. M.; Peter, L. M. J. Electroanal. Chem. 1983, 150,
593.
(35) Stimming, U.; Schultze, J. W. Ber. Bunsen-Ges. Phys. Chem. 1976,
80, 1297.
(36) Wilhelm, S. M.; Yun, K. S.; Ballenger, L. W.; Hackerman, N. J.
Electrochem. Soc. 1979, 126, 419.
(37) Schmuki, P.; Bu¨chler, M.; Virtanen, S.; Bo¨hni, H.; Muller, R.;
Gauckler, L. J. J. Electrochem. Soc. 1995, 142, 3336.
(38) Searson, P. C.; Latanision, R. M.; Stimming, U. J. Electrochem.
Soc. 1988, 135, 1358.
Acknowledgment. M. M. Scherer made many helpful
contributions to the experimental design and data analysis. D.
Romanowski contributed preliminary data as a summer student
in the Apprenticeships in Science and Engineering Program. J.
Higa and D. Severson made helpful contributions to final
experiments as part of the Lewis & Clark College Summer
Science Research Program, with support from the Murdock
Trust. Acknowledgment is made to the donors of the Petroleum
Research Fund, administered by the ACS, for the primary
support of this research (29995-AC5).
(39) Wilhelm, S. M.; Hackerman, N. J. Electrochem. Soc. 1981, 128,
1668.
(40) Kolthoff, I. M.; Lee, T. S.; Stocesova, D.; Parry, E. P. Anal. Chem.
1950, 22, 521.
(41) Finklea, H. O. In Semiconductor Electrodes; Finklea, H. O., Ed;
Elsevier: New York, 1988; pp 1.
(42) Hummel, R. E. Electronic Properties of Materials, 2nd ed.;
Springer-Verlag: New York, 1993.
(43) Benson, S. W. Thermochemical Kinetics: Methods for the Estima-
tion of Thermochemical Data and Rate Parameters, 2nd ed.; Wiley: New
York, 1976.
(44) Woodbury, G. Physical Chemistry; Brooks/Cole: Pacific Grove,
CA, 1997.
(45) Vogel, T. M.; Criddle, C. S.; McCarty, P. L. EnViron. Sci. Technol.
1987, 21, 722.
(46) Gerischer, H. In Physical Chemistry: An AdVanced Treatise;
Eyring, H., Ed; Academic: New York, 1970; Vol. IXA, p 463.
(47) Scherer, M. M.; Westall, J. C.; Ziomek-Moroz, M.; Tratnyek, P.
G. EnViron. Sci. Technol. 1997, 31, 2385.
(48) Stimming, U. Electrochim. Acta 1986, 31, 415.
(49) Schmickler, W. Ber. Bunsen-Ges. Phys. Chem. 1978, 82, 477.
(50) Schultze, J. W.; Stimming, U. Z. Phys. Chem., Neue Folge 1975,
98, 285.
(51) Meisterjahn, P.; Schultze, J. W.; Siemensmeyer, B.; Stimming, U.;
Dean, M. H. Chem. Phys. 1990, 141, 131.
(52) Schreyer, A.; Eng, L.; Bo¨hni, H. J. Vac. Sci. Technol. B 1996, 14,
1162.
(53) Gerischer, H. In Photoelectrochemistry, Photocatalysis, and Pho-
toreactors; Schiavello, M., Ed; D. Reidel: Holland, 1985; p 39.
(54) Kieber, R. J.; Mopper, K. EnViron. Sci. Technol. 1990, 24, 1477.
(55) Loraine, G. A. Hazard. Waste Hazard. Mater. 1993, 10, 185.
(56) Moore, J. H.; Davis, C. C.; Coplan, M. A. Building Scientific
Apparatus; Addison-Wesley: Reading, MA, 1983.
(57) Cunningham, K. M.; Goldberg, M. C.; Weiner, E. R. EnViron. Sci.
Technol. 1988, 22, 1090.
(58) Langford, C. H.; Carey, J. H. Can. J. Chem. 1975, 53, 2430.
(59) Henglein, A.; Lindig, B.; Westerhausen, J. J. Phys. Chem. 1981,
85, 1627.
(60) Bahnemann, D. W.; Mo¨nig, J.; Chapman, R. J. Phys. Chem. 1987,
91, 3782.
References and Notes
(1) Tratnyek, P. G. Chem. Ind. 1996, 1 July, 499.
(2) Hudlicky, M. Reductions in Organic Chemistry; Halsted: New
York, 1984.
(3) House, H. O. In Modern Synthetic Reactions, 2nd ed.; Benjamin:
Menlo Park, CA, 1972; p 145.
(4) Bratsch, S. G. J. Phys. Chem. Ref. Data 1984, 18, 1.
(5) Choi, W.; Hoffmann, M. R. EnViron. Sci. Technol. 1995, 29, 1646.
(6) Choi, W.; Hoffmann, M. R. J. Phys. Chem. 1996, 100, 2161.
(7) Matheson, L. J.; Tratnyek, P. G. EnViron. Sci. Technol. 1994, 28,
2045.
(8) Roberts, A. L.; Totten, L. A.; Arnold, W. A.; Burris, D. R.;
Campbell, T. J. EnViron. Sci. Technol. 1996, 30, 2654.
(9) Criddle, C. S.; McCarty, P. L. EnViron. Sci. Technol. 1991, 25,
973.
(10) Save´ant, J.-M. In AdVances in Physical Organic Chemistry; Bethell,
D., Ed; Academic: London, 1990; Vol. 26, pp 1.
(11) Johnson, T. L.; Scherer, M. M.; Tratnyek, P. G. EnViron. Sci.
Technol. 1996, 30, 2634.
(12) Pliego, J. R., Jr.; De Almeida, W. B. J. Phys. Chem. 1996, 100,
12410.
(13) Robinson, E. A. J. Chem. Soc. 1961, 1663.
(14) Totten, L. A.; Roberts, A. L. DiVision of EnVironmental Chemistry,
Preprints of Papers; 209th American Chemical Society National Meeting.
Anaheim, CA, 1995; Vol. 35, p 702.
(15) Morrison, S. R. Electrochemistry at Semiconductor and Oxidized
Metal Electrodes; Plenum: New York, 1980.
(16) Schmickler, W. J. Electroanal. Chem. 1977, 82, 65.
(17) Stimming, U. Langmuir 1987, 3, 423.
(18) Newmark, A. R.; Stimming, U. Electrochim. Acta 1987, 32, 1217.
(19) Leiva, E.; Meyer, P.; Schmickler, W. Corros. Sci. 1989, 29, 225.
(20) Miller, C.; Cuendet, P.; Gra¨tzel, M. J. Phys. Chem. 1991, 95, 877.
(21) Gu, Y.; Waldeck, D. H. J. Phys. Chem. 1996, 100, 9573.
(22) Gerischer, H. Corros. Sci. 1989, 29, 191.
(23) Stimming, U.; Schultze, J. W. Electrochim. Acta 1979, 24, 858.
(24) Castro, P. A.; R.Vago, E.; Calvo, E. J. J. Chem. Soc., Faraday
Trans. 1996, 92, 3371.
(61) Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Funda-
mentals and Applications; Wiley: New York, 1980.
(62) Stumm, W. Chemistry of the Solid-Water Interface: Processes at
the Mineral-Water and Particle-Water Interface in Natural Systems;
Wiley: New York, 1992.
(63) Waite, T. D. In Mineral-Water Interface Geochemistry; Hochella,
M. F., Jr.; White, A. F., Eds.; Mineralogical Society of America:
Washington, DC, 1990; Vol. 23, p 559.
(64) Packer, J. E.; Wilson, R. L.; Bahnemann, D.; Asmus, K.-D. J. Chem.
Soc., Perkin Trans. 2 1980, 296.
(65) Huston, P. L.; Pignatello, J. J. EnViron. Sci. Technol. 1996, 30,
3457.
(25) Cox, P. A. Transition Metal Oxides: An Introduction to their
Electronic Structure and Properties; Oxford: New York, 1995.
(26) Anderman, M.; Kennedy, J. H. In Semiconductor electrodes;
Finklea, H. O., Ed; Elsevier: New York, 1988; pp 147.
(27) Davenport, A. J.; Sansone, M. J. Electrochem. Soc. 1995, 142, 725.
(28) Bockris, J. O. M. Corros. Sci. 1989, 29, 291.
(66) Schultze, J. W.; Danzfuss, B.; Meyer, O.; Stimming, U. Mater.
Sci. Eng. 1985, 69, 273.
(67) Klausen, J.; Trober, S. P.; Haderlein, S. B.; Schwarzenbach, R. P.
EnViron. Sci. Technol. 1995, 29, 2396.
(68) Johnson, T. L.; Fish, W.; Gorby, Y. A.; Tratnyek, P. G. J. Contam.
Hydrol. 1998, 29, 377.