An Electron-Deficient meso-Substituted Phlorin
there has been interest in syntheses of phlorins from building
block precursors in analogy to stepwise syntheses of meso-
substituted porphyrins.12,13
recently (vide infra), the use of peripheral substituents to
improve the stability of phlorins had only been demonstrated
in Woodward’s work involving a phlorin stabilized by the steric
bulk of â-pyrrole substituents adjacent to the sp3-hybridized
carbon atom.2 The use of peripheral substituents to enhance
phlorin stability is attractive as such substituents are less
perturbing than metal insertion or N-substituents to the mac-
rocycle structure and to the central core. Our earlier observations
on the effect of meso-substituents on corrole stability18 inspired
our attempts to obtain stable phlorins via the judicious selection
of meso-substituents. Sterically bulky substituents (e.g., mesityl)
were expected to shield the meso-positions from oxidation, and
electron-withdrawing substituents (e.g., pentafluorophenyl) were
expected to render the macrocycle electron deficient and
therefore less prone to oxidation.
The presence of an sp3-hybridized meso-carbon atom has a
profound effect on the structure and properties of phlorins. The
sp3-hybridized carbon atom disrupts the conjugation of the
macrocycle, and it renders the ring nonplanar. Additionally, the
inner core of the phlorin macrocycle contains three N-H-type
nitrogen atoms compared to the two found in porphyrins. Thus,
the phlorin ligand upon deprotonation and metal insertion is
trianionic compared to the dianionic nature of porphyrins.
Finally, phlorins are generally unstable toward ambient light
and air. Phlorins bearing a hydrogen atom at the sp3-hybridized
position readily undergo oxidation to the corresponding aromatic
porphyrins. Phlorins for which this pathway is blocked by
substituents at the sp3-hybridized carbon atom are still subject
to oxidation, leading to ring-opened biladienone species.14 The
poor stability of phlorins complicates their preparation and study.
The handful of phlorins sufficiently stable for isolation and
characterization have generally possessed either an electro-
negative central metal ion15 or structurally distorting substituents/
tethers on one or more of the core nitrogen atoms.16,17 Until
Our initial efforts to explore the effect of peripheral meso-
substituents on the stability of phlorins considered the effect of
sterically bulky mesityl substituents, as the methodology of
Krattinger and Callot for the preparation of phlorins via
alkylation of a porphyrin precursor19 provided an attractive route
for the preparation of meso-mesityl substituted phlorins.
Encouragingly, we found that phlorin stability could be enhanced
by the incorporation of mesityl substituents at the three sp2-
hybridized meso-positions, increasing the half-life of dilute
solutions of phlorin exposed to light and air from <15 to
>90 min.20 Importantly, we found that steric protection was
required at all three sp2-hybridized meso-positions, not just the
two positions adjacent to the sp3-hybridized carbon atom (posi-
tions 10 and 20). The favorable outcome of this study provided
motivation for the investigation of electron-withdrawing sub-
stituents, and the recent report of stable phlorin-dipyrrin
conjugates possessing sterically bulky and electron-withdrawing
meso-substituents provided further encouragement.10 Our efforts
to prepare a phlorin bearing pentafluorophenyl substituents and
studies of its stability are described herein. The targeted phlorin
species, 5,5-dimethyl-10,15,20-tris(pentafluorophenyl)phlorin 3
(TpFPPhl), was selected as the two methyl groups prevent
oxidation of the sp3-hybridized meso-carbon atom and the
pentafluorophenyl groups would render the sp2-hybridized meso-
positions electron deficient.
(5) (a) Setsune, J.; Yazawa, T.; Ogoshi, H.; Yoshida, Z. J. Chem. Soc.,
Perkin Trans. I 1980, 1641-1645. (b) Pandian, R. P.; Chandrashekar, T.
K.; Chandrasekhar, V. Ind. J. Chem. 1991, 30A, 579-583. (c) Segawa, H.;
Azumi, R.; Shimidzu, T. J. Am. Chem. Soc. 1992, 114, 7564-7565. (d)
Jiang, X; Nurco, D. J.; Smith, K. M. Chem. Commun. 1996, 1759-1760.
(e) Collman, J. P.; Boulatov, R. J. Am. Chem. Soc. 2000, 122, 11812-
11821. (f) Senge, M. O.; Kalisch, W. W.; Bischoff, I. Chem.sEur. J. 2000,
6, 2721-2738. (g) Feng, X.; Bischoff, I.; Senge, M. O. J. Org. Chem. 2001,
66, 8693-8700.
(6) Arciero, D. M.; Hooper, A. B. Biochem. Soc. Trans. 1998, 26, 385-
389.
The preparation of TpFPPhl required an approach different
from alkylation of the corresponding porphyrin as the penta-
fluorophenyl groups are reactive toward strong nucleophiles.
Thus, we elected to explore dipyrromethanecarbinol chemistry
initially reported for the preparation of meso-substituted por-
phyrins21,22 and later extended to the preparation of other por-
phyrinoids such as heteroatom modified porphyrins,23 chlorin,24
(7) (a) Stolzenberg, A. M.; Stershic, M. T. Inorg. Chem. 1987, 26, 3082-
3083. (b) Stolzenberg, A. M.; Stershic, M. T. J. Am. Chem. Soc. 1988,
110, 6391-6402.
(8) Whitlock, H. W.; Oester, M. Y. J. Am. Chem. Soc. 1973, 95, 5738-
5741.
(9) Ka, J. W.: Lee, C. H. Tetrahedron Lett. 2001, 42, 4527-4529.
(10) Gryko, D. T.; Koszarna, B. Eur. J. Org. Chem. 2005, 3314-3318.
(11) (a) Li, X.; Chmielewski, P. J.; Xiang, J.; Xu, J.; Li, Y.; Liu, H.;
Zhu, D. Org. Lett. 2006, 8, 1137-1140. (b) Li, X.; Chmielewski, P. J.;
Xiang, J.; Xu, J.; Jiang, L.; Li, Y.; Liu, H.; Zhu, D. J. Org. Chem. 2006,
71, 9739-9742.
(18) Geier, G. R., III; Chick, J. F. B.; Callinan, J. B.; Reid, C. G.;
Auguscinski, W. P. J. Org. Chem. 2004, 69, 4159-4169.
(19) (a) Krattinger, B.; Callot, H. J. Tetrahedron Lett. 1996, 37, 7699-
7702. (b) Krattinger, B.; Callot, H. J. Eur. J. Chem. 1999, 1857-1867.
(20) LeSaulnier, T. D.; Graham, B. W.; Geier, G. R., III. Tetrahedron
Lett. 2005, 46, 5633-5637.
(12) Bucher, C.; Seidel, D.; Lynch, V.; Kral, V.; Sessler, J. L. Org. Lett.
2000, 2, 3103-3106.
(13) Hong, S. J.; Ka, J. W.; Won, D. H.; Lee, C. H. Bull. Korean Chem.
Soc. 2003, 24, 661-663.
(14) Jeandon, C.; Krattinger, B.; Ruppert, R.; Callot, H. J. Inorg. Chem.
2001, 40, 3149-3153.
(21) (a) Lee, C. H.; Li, F.; Iwamoto, K.; Dadok, J.; Bothner-By, A. A.;
Lindsey, J. S. Tetrahedron 1995, 51, 11645-11672. (b) Rao, P. D.;
Dhanalekshmi, S.; Littler, B. J.; Lindsey, J. S. J. Org. Chem. 2000, 65,
7323-7344. (c) Geier, G. R., III; Callinan, J. B.; Rao, D. P.; Lindsey, J. S.
J. Porphyrins Phthalocyanines 2001, 5, 810-823.
(15) Sugimoto, H. J. Chem. Soc., Dalton. Trans. 1982, 1169-1171.
(16) (a) Setsune, J.-i.; Ikeda, M.; Iida, T.; Kitao, T. J. Am. Chem. Soc.
1988, 110, 6572-6574. (b) Setsune, J.-i.; Ishimaru, Y.; Kitao, T. Chem.
Lett. 1990, 1351-1354. (c) Setsune, J.-i.; Yamaji, H.; Kitao, T. Tetrahedron
Lett. 1990, 31, 5057-5060. (d) Setsune, J.-i.; Wada, K.-i.; Higashino, H.
Chem. Lett. 1994, 213-216. (e) Setsune, J.-i.; Kashihara, K.; Wada, K.-i.
Chem. Lett. 2001, 608-609.
(22) Wallace, D. M.; Leung, S. H.; Senge, M. O.; Smith, K. M. J. Org.
Chem. 1993, 58, 7245-7257.
(23) Cho, W. S.; Kim, H. J.; Littler, B. J.; Miller, M. A.; Lee, C. H.;
Lindsey, J. S. J. Org. Chem. 1999, 64, 7890-7901.
(17) (a) Krattinger, B.; Callot, H. J. Chem. Commun. 1996, 1341-1342.
(b) Ruppert, R.; Jeandon, C.; Sgambati, A.; Callot, H. J. Chem. Commun.
1999, 2123-2124. (c) Ishimaru, Y.; Sumida, S.; Iida, T. Tetrahedron Lett.
2001, 42, 419-421.
(24) (a) Strachan, J. P.; O’Shea, D. F.; Balasubramanian, T.; Lindsey, J.
S. J. Org. Chem. 2000, 65, 3160-3172. (b) Balasubramanian, T.; Strachan,
J. P.; Boyle, P. D.; Lindsey, J. S. J. Org. Chem. 2000, 65, 7919-7929.
J. Org. Chem, Vol. 72, No. 11, 2007 4085