10.1002/chem.201805680
Chemistry - A European Journal
COMMUNICATION
Formanek, B. Voit, D. Appelhans, Angew. Chem. Int. Ed. 2017, 56,
16233-16238; d) H. Tan, S. Guo, N. D. Dinh, R. Luo, L. Jin, C. H. Chen,
Nat. Commun. 2017, 8, 663.
featuring with high tunability and extraordinary robustness, thus
allowing the postmodification and multiple reuse in catalysis. In
particular, the structure tunability of UiO-66-NH2 is fully exploited
through ligand exchange, creating optimal hydrophobicity of the
MOF-based catalyst with wide dispersion in various organic
[10] a) C. A. Denard, H. Huang, M. J. Bartlett, L. Lu, Y. Tan, H. Zhao, J. F.
Hartwig, Angew. Chem. Int. Ed. 2014, 53, 465-469; b) F. Rudroff, M. D.
Mihovilovic, H. Gröger, R. Snajdrova, H. Iding, U. T. Bornscheuer, Nat.
Catal. 2018, 1, 12-22.
solvents. On
a
broader perspective, these successful
demonstrations open new avenues in the field of biohybrid
catalysts where a plateau of other chemo- and biocatalysts and
MOFs structures can be further explored. Furthermore, the
heterogeneous MOF-based hybrid catalysts were successfully
applied for one-pot cascade reaction with high efficiency. This
proof-of-principle example suggests the fascinating perspectives
of MOF-based catalysts towards more advanced applications in
the future.
[11] a) K. Engstrom, E. V. Johnston, O. Verho, K. P. Gustafson, M. Shakeri,
C. W. Tai, J. E. Bäckvall, Angew. Chem. Int. Ed. 2013, 52, 14006-14010;
b) K. P. Gustafson, R. Lihammar, O. Verho, K. Engstrom, J. E. Bäckvall,
J. Org. Chem. 2014, 79, 3747-3751.
[12] a) E. S. Park, J. S. Shin, J. Mol. Catal. B-Enzym. 2015, 121, 9-14; b) T.
Görbe, K. P. J. Gustafson, O. Verho, G. Kervefors, H. Zheng, X. Zou, E.
V. Johnston, J. E. Bäckvall, ACS Catal. 2017, 7, 1601-1605.
[13] a) M. Egi, K. Sugiyama, M. Saneto, R. Hanada, K. Kato, S. Akai, Angew.
Chem. Int. Ed. 2013, 52, 3654-3658; b) Y. C. Lee, S. Dutta, K. C. Wu,
ChemSusChem 2014, 7, 3241-3246; c) H. Huang, C. A. Denard, R.
Alamillo, A. J. Crisci, Y. Miao, J. A. Dumesic, S. L. Scott, H. Zhao, ACS
Catal. 2014, 4, 2165-2168.
Acknowledgements
[14] F. Zhao, H. Li, Y. Jiang, X. Wang, X. Mu, Green Chem. 2014, 16, 2558-
2568.
The Thousand Talents Program (1800-16GH030121), China
Postdoctoral Science Foundation (2017M623231), Fundamental
Research Funds for the Central Universities (3102018zy051), and
DFG (WU 814/1-1) are acknowledged.
[15] Y. Wei, H. Dong, J. Xu, Q. Feng, ChemPhysChem 2002, 3, 802-808.
[16] a) D. Feng, T.-F. Liu, J. Su, M. Bosch, Z. Wei, W. Wan, D. Yuan, Y.-P.
Chen, X. Wang, K. Wang, X. Lian, Z.-Y. Gu, J. Park, X. Zou, H.-C. Zhou,
Nat. Commun. 2015, 6, 5979; b) Y. Cui, B. Li, H. He, W. Zhou, B. Chen,
G. Qian, Acc. Chem. Res. 2016, 49, 483-493; c) P. Z. Li, X. J. Wang, J.
Liu, J. S. Lim, R. Q. Zou, Y. L. Zhao, J. Am. Chem. Soc. 2016, 138, 2142-
2145; d) P. Li, S. Y. Moon, M. A. Guelta, L. Lin, D. A. Gomez-Gualdron,
R. Q. Snurr, S. P. Harvey, J. T. Hupp, O. K. Farha, ACS Nano 2016, 10,
9174-9182.
Keywords: heterogeneous catalysis• metal-organic frameworks
(MOFs) • enzyme immobilization • cascade reactions • Pd
nanoparticles
[17] a) Z. Wang, S. M. Cohen, J. Am. Chem. Soc. 2007, 129, 12368-12369;
b) K. K. Tanabe, Z. Wang, S. M. Cohen, J. Am. Chem. Soc. 2008, 130,
8508-8517; c) A. D. Burrows, C. G. Frost, M. F. Mahon, C. Richardson,
Angew. Chem. Int. Ed. 2008, 47, 8482-8486; d) N. C. Thacker, Z. Lin, T.
Zhang, J. C. Gilhula, C. W. Abney, W. Lin, J. Am. Chem. Soc. 2016, 138,
3501-3509.
[1]
[2]
[3]
[4]
Z. H. Zhou, D. B. McCarthy, C. M. O'Connor, L. J. Reed, J. K. Stoops,
Proc. Natl. Acad. Sci. USA 2001, 98, 14802-14807.
B. Worsdorfer, K. J. Woycechowsky, D. Hilvert, Science 2011, 331, 589-
592.
W. Bonacci, P. K. Teng, B. Afonso, H. Niederholtmeyer, P. Grob, P. A.
Silver, D. F. Savage, Proc.Natl. Acad. Sci. USA 2012, 109, 478-483.
a) M. Filice, J. M. Palomo, ACS Catal. 2014, 4, 1588-1598; b) J. Muschiol,
C. Peters, N. Oberleitner, M. D. Mihovilovic, U. T. Bornscheuer, F.
Rudroff, Chem. Commun. 2015, 51, 5798-5811; c) C. Hold, S. Billerbeck,
S. Panke, Nat. Commun. 2016, 7, 12971; d) K. S. Rabe, J. Muller, M.
Skoupi, C. M. Niemeyer, Angew. Chem. Int. Ed. 2017, 56, 13574-13589;
e) X. Liu, D. Appelhans, B. Voit, J. Am. Chem. Soc. 2018, DOI:
10.1021/jacs.8b07980.
[18] a) L. Chen, H. Chen, R. Luque, Y. Li, Chem. Sci. 2014, 5, 3708-3714; b)
N. Shang, S. Gao, X. Zhou, C. Feng, Z. Wang, C. Wang, RSC Adv. 2014,
4, 54487-54493; c) A. Aijaz, Q. Zhu, N. Tsumori, T. Akita, Q. Xu, Chem.
Commun. 2015, 51, 2577-2580; d) C. Rösler, R. A. Fischer,
CrystEngComm 2015, 17, 199-217.
[19]
a) Y. Shih, S. Lo, N. Yang, B. Singco, Y. Cheng, C. Wu, I. Chang, H.
Huang, C. Lin, ChemPlusChem 2012, 77, 982-986; b) F. Qin, S. Jia, F.
Wang, S. Wu, J. Song, Y. Liu, Catal. Sci. Technol. 2013, 3, 2761-2768;
c) F. Lyu, Y. Zhang, R. N. Zare, J. Ge, Z. Liu, Nano lett. 2014, 14, 5761-
5765; d) X. Wang, T. A. Makal, H. Zhou, Aust. J. Chem. 2014, 67, 1629-
1631; e) C. Hou, Y. Wang, Q. Ding, L. Jiang, M. Li, W. Zhu, D. Pan, H.
Zhu, M. Liu, Nanoscale 2015, 7, 18770-18779; f) W. Liu, N. Yang, Y.
Chen, S. Lirio, C. Wu, C. Lin, H. Huang, Chem. Eur. J. 2015, 21, 115-
119; g) F. Shieh, S. Wang, C. Yen, C. Wu, S. Dutta, L. Chou, J. V.
Morabito, P. Hu, M. Hsu, K. C. Wu, C. Tsung, J. Am. Chem. Soc. 2015,
137, 4276-4279; h) X. Wu, J. Ge, C. Yang, M. Hou, Z. Liu, Chem.
Commun. 2015, 51, 13408-13411; i) J. Mehta, N. Bhardwaj, S. K.
Bhardwaj, K. Kim, A. Deep, Coordin. Chem. Rev. 2016, 322, 30-40; j) P.
Li, S. Moon, M. A. Guelta, S. P. Harvey, J. T. Hupp, O. K. Farha, J. Am.
Chem. Soc. 2016, 138, 8052-8055; k) Y. Cao, Z. Wu, T. Wang, Y. Xiao,
Q. Huo, Y. Liu, Dalton Trans.3714 2016, 45, 6998-7003; l) H. He, H. Han,
H. Shi, Y. Tian, F. Sun, Y. Song, Q. Li, G. Zhu, ACS Appl. Mater.
Interfaces 2016, 8, 24517-24524; m) S. Jung, S. Park, ACS Catal. 2017,
7, 438-442; n) E. Gkaniatsou, C. Sicard, R. Ricoux, J. Mahy, N. Steunou,
C. Serre, Mater. Horiz. 2017, 4, 55-63; o) W. Chen, M. Vázquez-
González, A. Zoabi, R. Abu-Reziq, I. Willner, Nat. Catal. 2018, 1, 689-
695.
[5]
[6]
[7]
W. Meng, R. A. Muscat, M. L. McKee, P. J. Milnes, A. H. El-Sagheer, J.
Bath, B. G. Davis, T. Brown, R. K. O'Reilly, A. J. Turberfield, Nat. Chem.
2016, 8, 542-548.
a) T. W. Giessen, P. A. Silver, ChemBioChem 2016, 17, 1931-1935; b)
M. Brasch, R. M. Putri, M. V. de Ruiter, D. Luque, M. S. Koay, J. R.
Caston, J. J. Cornelissen, J. Am. Chem. Soc. 2017, 139, 1512-1519.
a) R. Matsumoto, M. Kakuta, T. Sugiyama, Y. Goto, H. Sakai, Y. Tokita,
T. Hatazawa, S. Tsujimura, O. Shirai, K. Kano, Phys. Chem. Chem. Phys.
2010, 12, 13904-13906; b) L. Hosta-Rigau, M. J. York-Duran, Y. Zhang,
K. N. Goldie, B. Stadler, ACS Appl. Mater. Interfaces 2014, 6, 12771-
12779.
[8]
[9]
a) V. Kohler, Y. M. Wilson, M. Durrenberger, D. Ghislieri, E. Churakova,
T. Quinto, L. Knorr, D. Haussinger, F. Hollmann, N. J. Turner, T. R. Ward,
Nat. Chem. 2013, 5, 93-99; b) D. F. Sauer, T. Himiyama, K. Tachikawa,
K. Fukumoto, A. Onoda, E. Mizohata, T. Inoue, M. Bocola, U.
Schwaneberg, T. Hayashi, J. Okuda, ACS Catal. 2015, 5, 7519-7522; c)
Y. Okamoto, V. Kohler, T. R. Ward, J. Am. Chem. Soc. 2016, 138, 5781-
5784.
a) D. M. Vriezema, P. M. Garcia, N. Sancho Oltra, N. S. Hatzakis, S. M.
Kuiper, R. J. Nolte, A. E. Rowan, J. C. van Hest, Angew. Chem. Int. Ed.
2007, 46, 7378-7382; b) P. Tanner, O. Onaca, V. Balasubramanian, W.
Meier, C. G. Palivan, Chem. Eur. J. 2011, 17, 4552-4560; c) X. Liu, P.
[20] a) M. J. Climent, A. Corma, S. Iborra, M. J. Sabater, ACS Catal. 2014, 4,
870-891; b) Y. B. Huang, J. Liang, X. S. Wang, R. Cao, Chem. Soc. Rev.
This article is protected by copyright. All rights reserved.