1272 J ournal of Medicinal Chemistry, 2003, Vol. 46, No. 7
Blanchfield et al.
(21) Tenma, T.; Yodoya, E.; Tashima, S.; Fujita, T.; Murakami, M.;
Yamamoto, A.; Muranishi, S. Development of new lipophilic
derivatives of tetragastrin: physicochemical characteristics and
intestinal absorption of acyl-tetragastrin derivatives in rats.
Pharm. Res. 1993, 10, 1488-1492.
(22) Toth, I.; Flinn, N.; Hillery, A.; Gibbons, W. A.; Artursson, P.
Lipidic conjugates of luteinizing hormone releasing hormone and
thyrotropin releasing hormone that release and protect the
native hormones in homogenates of human intestinal epithelial
(Caco-2) cells. Int. J . Pharm. 1994, 105, 241-247.
(23) Flinn, N.; Coppard, S.; Toth, I. Oral absorption studies of lipidic
conjugates of thyrotropin releasing hormone (TRH) and lutein-
izing hormone-releasing hormone (LHRH). Int. J . Pharm. 1996,
1996, 33-39.
(24) Pinto, M.; Appay, M. D.; Simon-Assmann, P.; Dracopoli, N.; Fogh,
J .; Zweibaum, A. Enterocytic differentiation of cultured human
cancer cells by replacement of glucose by galactose in the
medium. Biol. Cell 1983, 47, 232-330.
(25) Wilson, J .; Hassan, I. F.; Dix, C. J .; Williamson, I.; Shah, R.;
Mackay, M. Transport and permeability properties of human
Caco-2 cells: an in vitro model of the intestinal epithelial cell
barrier. J . Controlled Release 1990, 11, 25-40.
(26) Artursson, P.; Karlsson, J . Correlation between oral drug
absorption in humans and apparent drug permeability coef-
ficients in human intestinal epithelial (Caco-2) cells. Biochem.
Biophys. Res. Commun. 1991, 175, 880-885.
(27) Artursson, P.; Palm, K.; Luthman, K. Caco-2 monolayers in
experimental and theoretical predictions of drug transport. Adv.
Drug Delivery Rev. 2001, 46, 27-43.
(28) Blanchfield, J .; Dutton, J . L.; Hogg, R.; Craik, D. J .; Adams, D.
J .; Lewis, R.; Alewood, P. F.; Toth, I. The synthesis and structure
of an N-terminal dodecanoic acid conjugate of R-conotoxin MII.
Lett. Pept. Sci. 2002, 8, 235-239.
(29) Gibbons, W. A.; Hughes, R. A.; Charalambous, M.; Christodoulou,
M.; Szeto, A.; Aulabaugh, A. E.; Mascagni, P.; Toth, I. Synthesis,
resolution and structural elucidation of lipidic amino acids and
their homo- and hetero-oligomers. Liebigs Ann. Chem. 1990,
1175-1183.
(30) Schnolzer, M.; Alewood, P. F.; J ones, A.; Alewood, D.; Kent, S.
B. H. In situ neutralization in Boc-chemistry solid-phase peptide
synthesis. Int. J . Pept. Protein Res. 1992, 40, 180-193.
(31) Sarin, V. K.; Kent, S. B. H.; Tam, J . P.; Merrifield, R. B.
Quantitative monitoring of solid-phase peptide synthesis by the
ninhydrin reaction. Anal. Biochem. 1981, 117, 147-157.
(32) Rance, M.; Sorensen, O. W.; Bodenhausen, G.; Wagner, G.; Ernst,
R. R.; Wuthrich, K. Improved spectral resolution in cosy 1H
NMR spectra of proteins via double quantum filtering. Biochem.
Biophys. Res. Commun. 1983, 27, 157-162.
peptide. This material is available free of charge via the
Internet at http://pubs.acs.org.
Refer en ces
(1) Olivera, B. M.; Rivier, J . E.; Clark, C.; Ramilo, C. A.; Corpuz,
G. P.; Abogadie, F. C.; Mena, E.; Woodward, S. R.; Hillyard, D.
R.; Cruz, L. J . Diversity of Conus neuropeptides. Science 1990,
249, 257-263.
(2) Cruz, L. J .; McIntosh, J . M.; Imperial, J . S.; Gray, W.; Conus,
R. Peptides and their iodinated derivatives as probes for ion
channels and receptors. Methods and Tools in Biosciences and
Medicine; Birkhauser Verlag: Basel, Switzerland, 2000; pp 74-
89.
(3) Lina, C.; Changeux, J .-P. Allosteric nicotinic receptors, human
pathologies. J . Physiol. (Paris) 1998, 92, 63-74.
(4) Ward, J . M.; Crockcroft, V. B.; Lunt, G. G.; Smillie, F. S.;
Wonnacott, S. Methyllycaconitine: a selective probe for neuronal
R-bungarotoxin binding sites. FEBS Lett. 1990, 270, 45-48.
(5) Seguela, P.; Wadiche, J .; Dineley-Miller, K.; Dani, J . A.; Patrick,
J . W. Molecular cloning, functional properties, and distribution
of rat brain alpha 7: a nicotinic cation channel highly permeable
to calcium. J . Neurosci. 1993, 13, 596-604.
(6) Luetje, C. W.; Wanda, K.; Rogers, S.; Abramson, S. N.; Tsuji,
K.; Heinemann, S.; Patrick, J . W. Neurotoxins distinguish
between different neuronal nicotinic acetylcholine receptor
subunit combinations. J . Neurochem. 1990, 55, 632-640.
(7) McIntosh, J . M.; Santos, A. D.; Olivera, B. M. Conus peptides
targeted to specific nicotinic acetylcholine receptor subtypes.
Annu. Rev. Biochem. 1999, 68, 59-88.
(8) Dutton, J . L.; Craik, D. J . R-Conotoxins: nicotinic acetylcholine
receptor antagonists as pharmacological tools and potential drug
leads. Curr. Med. Chem. 2001, 8, 327-344.
(9) Wevers, A.; Schroder, H. Nicotinic acetylcholine receptors in
Alzheimer’s disease. J . Alzheimer’s Dis. 1999, 1, 207-219.
(10) Newhouse, P. A.; Potter, A.; Levin, E. D. Nicotinic involvement
in Alzheimer’s and Parkinson’s diseases. Implications for thera-
peutics. Drugs Aging 1997, 11, 206-208.
(11) Picciotto, M. R.; Zoli, M.; Rimondin, R.; Lena, C.; Marubio, L.
M.; Pich, E. M.; Fuxe, K.; Changeux, J .-P. Acetylcholine receptors
containing the â2 subunit are involved in the reinforcing
properties of nicotine. Nature 1998, 391, 173-177.
(12) Zhang, R.; Snyder, G. H. Factors governing selective formation
of specific disulfides in synthetic variants of R-conotoxin. Bio-
chemistry 1991, 30, 11343-11348.
(13) Gehrmann, J .; Alewood, P. F.; Craik, D. J . Structure Determi-
nation of the three disulfide bond isomers of R-conotoxin GI: A
model for the role of disulfide bonds in structural stability. J .
Mol. Biol. 1998, 278, 401-415.
(14) Cartier, E. G.; Yoshikami, D.; Gray, W., R.; Luo, S.; Olivera, B.
M.; McIntosh, J . M. A New R-Conotoxin Which Targets R3â2
Nicotinic Acetylcholine Receptors. J . Biol. Chem. 1996, 271,
7522-7528.
(15) Shon, K.-J .; Koerber, S. C.; Rivier, J . E.; Olivera, B. M.;
McIntosh, J. M. Three-Dimensional Solution Structure of R-Cono-
toxin MII, an R3â2 Neuronal Nicotinic Acetylcholine Receptor-
Targeted Ligand. Biochemistry 1997, 36, 15693-15700.
(16) Hill, J . M.; Oomen, C. J .; Miranda, L. P.; Bingham, J .-P.;
Alewood, P. F.; Craik, D. J . Three-Dimensional Solution Struc-
ture of R-Conotoxin MII by NMR Spectroscopy: Effects of
Solution Environment on Helicity. Biochemistry 1998, 37,
15621-15630.
(17) Harvey, S. C.; McIntosh, J . M.; Cartier, E. G.; Maddox, F. N.;
Luetje, C. W. Determinants of Specificity for R-Conotoxin MII
on R3â2 Neuronal Nicotinic Receptors. Mol. Pharmacol. 1997,
51, 336-342.
(18) Bundgaard, H.; Hansen, B. B. Prodrugs as drug delivery systems.
Pharm. Int. 1981, J une, 136-140.
(19) Wong, A.; Bender, V.; Toth, I. Drug Delivery Systems Utilizing
Lipids and Sugars. Molecular Pathomechanisms and New
Trends in Drug Research; Harwood Academic Publishers: Am-
sterdam, The Netherlands, 2003; in press.
(20) Tanaka, K.; Fujita, T.; Yamamoto, Y.; Murakami, M.; Yamamoto,
A.; Muranishi, S. Enhancement of intestinal transport of thy-
rotropin-releasing hormone via a carrier-mediated transport
system by chemical modification with lauric acid. Biochim.
Biophys. Acta 1996, 1283, 119-126.
(33) Bax, A.; Davis, D. G. MLEV-17-based two-dimensional homo-
nuclear magnetization transfer spectroscopy. J . Magn. Reson.
1985, 55, 301-315.
(34) J eener, J .; Meier, B. H.; Bachmann, P.; Ernst, R. R. Investigation
of exchange processes by two-dimensional NMR spectroscopy.
J . Chem. Phys. 1979, 71, 4546-4553.
(35) Kumar, A.; Ernst, R. R.; Wuthrich, K. A two-dimensional nuclear
Overhauser enhancement (2D NOE) experiment for the elucida-
tion of complete proton-proton cross-relaxation networks in
biological macromolecules. Biochem. Biophys. Res. Commun.
1980, 95, 1-6.
(36) Fieber, L. A.; Adams, D. J . Acetylcholine-evoked currents in
cultured neurones dissociated from rat parasympathetic cardiac
ganglia. J . Physiol. 1991, 434, 215-237.
(37) Rae, J .; Cooper, K.; Gates, P.; Watsky, M. Low access resistance
perforated patch recordings using amphotericin B. J . Neurosci.
Methods 1991, 37, 15-26.
(38) Zhang, Z. W.; Vijayaraghavan, S. K. B. D. Neuronal acetylcholine
receptors that bind alpha-bungarotoxin with high affinity func-
tion as ligand-gated ion channels. Neuron 1994, 12, 167-177.
J M020426J