RSC Advances
Paper
make the HP-TPP-3 hydrophobic. However, the introduction of
P]O bond caused HP-TPPO-3 to possess certain hydrophilicity
compared with HP-TPP-3. What's more, P]O bond is a kind of
hydrogen bond acceptor,70 making the interaction force
between HP-TPPO-3 and water molecules stronger. This two
factors mentioned above, make HP-TPPO-3 easier to form
a uniform dispersion in RB aqueous solution. Thus, the RB in
water could fully contact with the hybrid porous polymers and
easily enter into the pores of the hybrid polymers. In addition,
5 J. S. Seo, D. Whang, H. Lee, S. Im Jun, J. Oh, Y. J. Jeon and
K. Kim, Nature, 2000, 404, 982–986.
6 C. H. Christensen, K. Johannsen, I. Schmidt and
C. H. Christensen, J. Am. Chem. Soc., 2003, 125, 13370–13371.
7 A. Patra and U. Scherf, Chem.–Eur. J., 2012, 18, 10074–10080.
8 V. S.-Y. Lin, K. Motesharei, K.-P. S. Dancil, M. J. Sailor and
M. R. Ghadiri, Science, 1997, 278, 840–843.
9 P. Wu, J. Wang, Y. Li, C. He, Z. Xie and C. Duan, Adv. Funct.
Mater., 2011, 21, 2788–2794.
the oxygen-rich units (TPPO) make HP-TPPO-3 possess partially 10 P. Wu, J. Wang, C. He, X. Zhang, Y. Wang, T. Liu and
negative charges, which allow additionally strong electrostatic C. Duan, Adv. Funct. Mater., 2012, 22, 1698–1703.
interactions with cationic dye molecules (RB).71,72 This also 11 T. Fei, K. Jiang, S. Liu and T. Zhang, RSC Adv., 2014, 4,
explained the adsorption behaviors of HP-TPPO-3 could better 21429–21434.
t Dubinin–Radushkevich model. The last but not least, the 12 D. A. Edwards, J. Hanes, G. Caponetti, J. Hrkach, A. Ben-
adsorption amount of bulky dye molecules (such as RB) onto
porous materials increased with the increasing mesopore
Jebria, M. L. Eskew, J. Mintzes, D. Deaver, N. Lotan and
R. Langer, Science, 1997, 276, 1868–1872.
volumes.73,74 Although SBET of HP-TPP-3 was higher than that of 13 C.-Y. Lai, B. G. Trewyn, D. M. Jeinija, K. Jeinija, S. Xu,
HP-TPPO-3, HP-TPPO-3 had more mesopores than HP-TPP-3,
which made the Qe of HP-TPPO-3 larger than HP-TPP-3.
S. Jeinija and V. S.-Y. Lin, J. Am. Chem. Soc., 2003, 125,
4451–4459.
´
Aer these porous materials adsorbed dyes, they could be 14 P. Horcajada, C. Serre, M. Vallet-Regı, M. Sebban, F. Taulelle
´
regenerated by Soxhlet extraction with methanol and used and G. Ferey, Angew. Chem., 2006, 118, 6120–6124.
again. In addition, dye molecules could also be recycled aer 15 P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie,
methanol was removed by vacuum.
T. Baati, J. F. Eubank, D. Heurtaux, P. Clayette and
C. Kreuz, Nat. Mater., 2010, 9, 172–178.
16 M. Hartmann, S. Kullmann and H. Keller, J. Mater. Chem.,
2010, 20, 9002–9017.
Conclusions
Phosphorus-centered trigonal pyramidal molecule triphenyl- 17 Q. Liu, L. Wang, A. Xiao, J. Gao, W. Ding, H. Yu, J. Huo and
phosphine and triphenylphosphine oxide, and cubic octavi- M. Ericson, J. Hazard. Mater., 2010, 181, 586–592.
nylsilsesquioxane, were simultaneously used as building blocks 18 F.-H. Wang, W. Jiang, Y. Fang and C.-W. Cheng, Chem. Eng.
to easily synthesize two novel parallel series of hybrid porous J., 2015, 259, 827–836.
polymers via the Friedel–Cras reaction. The resulting mate- 19 D. Wu, F. Xu, B. Sun, R. Fu, H. He and K. Matyjaszewski,
rials possessed unique bimodal pores with uniform micropore Chem. Rev., 2012, 112, 3959–4015.
centered at 1.5 nm and mesopore centered at 3.7 nm, high 20 A. Thomas, Angew. Chem., Int. Ed., 2010, 49, 8328–8344.
surface areas up to 1105 m2 gꢀ1, and high thermal stability. 21 A. I. Cooper, Adv. Mater., 2009, 21, 1291–1295.
More importantly, they possessed an excellent size-selective 22 G. Cheng, N. R. Vautravers, R. E. Morris and D. J. Cole-
adsorption performance for different molecular size dyes and
could rapidly remove bulky rhodamine B. Simple synthetic 23 A. Sellinger and R. M. Laine, Chem. Mater., 1996, 8, 1592–
procedure, commercial raw materials, and inexpensive catalyst 1593.
make these hybrid porous polymers very promising to be 24 M. Asuncion and R. M. Laine, J. Am. Chem. Soc., 2010, 132,
Hamilton, Org. Biomol. Chem., 2008, 6, 4662–4667.
industrialized and be of great use in the eld of dyes separation
3723–3736.
and wastewater treatment.
25 H. Liu, M. Puchberger and U. Schubert, Chem.–Eur. J., 2011,
17, 5019–5023.
26 M. F. Roll, J. W. Kampf and R. M. Laine, Macromolecules,
2011, 44, 3425–3435.
Acknowledgements
This research was supported by the National Natural Science 27 J. C. Furgal, J. H. Jung, T. Goodson III and R. M. Laine, J. Am.
Foundation of China (NSFC) (grant number 21274081 and
21574075).
Chem. Soc., 2013, 135, 12259–12269.
28 L. Li and H. Liu, RSC Adv., 2014, 4, 46710–46717.
29 Y. Liu, W. Yang and H. Liu, Chem.–Eur. J., 2015, 21, 4731–
4738.
30 Y. Wu, D. Wang, L. Li, W. Yang, S. Feng and H. Liu, J. Mater.
Chem. A, 2014, 2, 2160–2167.
31 D. Wang, W. Yang, L. Li, X. Zhao, S. Feng and H. Liu, J. Mater.
Chem. A, 2013, 1, 13549–13558.
32 W. Yang, D. Wang, L. Li and H. Liu, Eur. J. Inorg. Chem., 2014,
2014, 2976–2982.
References
1 R. J. White, V. Budarin, R. Luque, J. H. Clark and
D. J. Macquarrie, Chem. Soc. Rev., 2009, 38, 3401–3418.
2 J. Germain, J. M. Frechet and F. Svec, Small, 2009, 5, 1098–
1111.
3 H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc., 2009, 131,
8875–8883.
33 D. Wang, L. Xue, L. Li, B. Deng, S. Feng, H. Liu and X. Zhao,
Macromol. Rapid Commun., 2013, 34, 861–866.
4 S.-Y. Ding and W. Wang, Chem. Soc. Rev., 2013, 42, 548–568.
37738 | RSC Adv., 2016, 6, 37731–37739
This journal is © The Royal Society of Chemistry 2016