Page 5 of 7
ACS Medicinal Chemistry Letters
(2) Briscoe, C. P.; Tadayyon, M.; Andrews, J. L.; Benson, W. G.;
Chen,M.; Lopez, E.; Nguyen, K.; Yang, L.; Tang, L.; Tian, H.;
Shuttleworth, S. J.; Lin, D. C., AMG 837: a potent, orally
bioavailable GPR40 agonist. Bioorganic & medicinal chemistry
letters 2012, 22 (2), 1267-70.
(13) Costanzi, S.; Neumann, S.; Gershengorn, M. C., Seven
transmembrane-spanning receptors for free fatty acids as
therapeutic targets for diabetes mellitus: pharmacological,
phylogenetic, and drug discovery aspects. The Journal of biological
chemistry 2008, 283 (24), 16269-73.
(14) Takano, R.; Yoshida, M.; Inoue, M.; Honda, T.; Nakashima,
R.; Matsumoto, K.; Yano, T.; Ogata, T.; Watanabe, N.; Hirouchi,
M.; Yoneyama, T.; Ito, S.; Toda, N., Discovery of DS-1558: A
Potent and Orally Bioavailable GPR40 Agonist. ACS medicinal
chemistry letters 2015, 6 (3), 266-70.
1
2
3
4
5
6
7
8
Chambers, J. K.; Eilert, M. M.; Ellis, C.; Elshourbagy, N. A.; Goetz,
A. S.; Minnick, D. T.; Murdock, P. R.; Sauls, H. R., Jr.; Shabon, U.;
Spinage, L. D.; Strum, J. C.; Szekeres, P. G.; Tan, K. B.; Way, J.
M.; Ignar, D. M.; Wilson, S.; Muir, A. I., The orphan G protein-
coupled receptor GPR40 is activated by medium and long chain
fatty acids. The Journal of biological chemistry 2003, 278 (13),
11303-11.
(3) Nagasumi, K.; Esaki, R.; Iwachidow, K.; Yasuhara, Y.; Ogi, K.;
Tanaka, H.; Nakata, M.; Yano, T.; Shimakawa, K.; Taketomi, S.;
Takeuchi, K.; Odaka, H.; Kaisho, Y., Overexpression of GPR40 in
pancreatic beta-cells augments glucose-stimulated insulin secretion
and improves glucose tolerance in normal and diabetic mice.
Diabetes 2009, 58 (5), 1067-76.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(4) Tsujihata, Y.; Ito, R.; Suzuki, M.; Harada, A.; Negoro, N.;
Yasuma, T.; Momose, Y.; Takeuchi, K., TAK-875, an orally
available G protein-coupled receptor 40/free fatty acid receptor 1
agonist, enhances glucose-dependent insulin secretion and
improves both postprandial and fasting hyperglycemia in type 2
diabetic rats. The Journal of pharmacology and experimental
therapeutics 2011, 339 (1), 228-37.
(5) Poitout, V.; Lin, D. C., Modulating GPR40: therapeutic promise
and potential in diabetes. Drug discovery today 2013, 18 (23-24),
1301-8.
(6) Yabuki, C.; Komatsu, H.; Tsujihata, Y.; Maeda, R.; Ito, R.;
Matsuda-Nagasumi, K.; Sakuma, K.; Miyawaki, K.; Kikuchi, N.;
Takeuchi, K.; Habata, Y.; Mori, M., A novel antidiabetic drug,
fasiglifam/TAK-875, acts as an ago-allosteric modulator of FFAR1.
PloS one 2013, 8 (10), e76280.
(7) Wolenski, F. S.; Zhu, A. Z. X.; Johnson, M.; Yu, S.; Moriya, Y.;
Ebihara, T.; Csizmadia, V.; Grieves, J.; Paton, M.; Liao, M.;
Gemski, C.; Pan, L.; Vakilynejad, M.; Dragan, Y. P.; Chowdhury,
S. K.; Kirby, P. J., Fasiglifam (TAK-875) Alters Bile Acid
Homeostasis in Rats and Dogs: A Potential Cause of Drug Induced
Liver Injury. Toxicological sciences : an official journal of the
Society of Toxicology 2017, 157 (1), 50-61.
(8) Li, X.; Zhong, K.; Guo, Z.; Zhong, D.; Chen, X., Fasiglifam
(TAK-875) Inhibits Hepatobiliary Transporters: A Possible Factor
Contributing to Fasiglifam-Induced Liver Injury. Drug metabolism
and disposition: the biological fate of chemicals 2015, 43 (11),
1751-9.
(9) Hauge, M.; Vestmar, M. A.; Husted, A. S.; Ekberg, J. P.; Wright,
M. J.; Di Salvo, J.; Weinglass, A. B.; Engelstoft, M. S.; Madsen, A.
N.; Luckmann, M.; Miller, M. W.; Trujillo, M. E.; Frimurer, T. M.;
Holst, B.; Howard, A. D.; Schwartz, T. W., GPR40 (FFAR1) -
Combined Gs and Gq signaling in vitro is associated with robust
incretin secretagogue action ex vivo and in vivo. Molecular
metabolism 2015, 4 (1), 3-14.
(10) Christiansen, E.; Hansen, S. V.; Urban, C.; Hudson, B. D.;
Wargent, E. T.; Grundmann, M.; Jenkins, L.; Zaibi, M.; Stocker, C.
J.; Ullrich, S.; Kostenis, E.; Kassack, M. U.; Milligan, G.;
Cawthorne, M. A.; Ulven, T., Discovery of TUG-770: A Highly
Potent Free Fatty Acid Receptor 1 (FFA1/GPR40) Agonist for
Treatment of Type 2 Diabetes. ACS medicinal chemistry letters
2013, 4 (5), 441-445.
(11) Negoro, N.; Sasaki, S.; Mikami, S.; Ito, M.; Suzuki, M.;
Tsujihata, Y.; Ito, R.; Harada, A.; Takeuchi, K.; Suzuki, N.;
Miyazaki, J.; Santou, T.; Odani, T.; Kanzaki, N.; Funami, M.;
Tanaka, T.; Kogame, A.; Matsunaga, S.; Yasuma, T.; Momose, Y.,
(15) Hamdouchi, C.; Kahl, S. D.; Patel Lewis, A.; Cardona, G. R.;
Zink, R. W.; Chen, K.; Eessalu, T. E.; Ficorilli, J. V.; Marcelo, M.
C.; Otto, K. A.; Wilbur, K. L.; Lineswala, J. P.; Piper, J. L.; Coffey,
D. S.; Sweetana, S. A.; Haas, J. V.; Brooks, D. A.; Pratt, E. J.; Belin,
R. M.; Deeg, M. A.; Ma, X.; Cannady, E. A.; Johnson, J. T.;
Yumibe, N. P.; Chen, Q.; Maiti, P.; Montrose-Rafizadeh, C.; Chen,
Y.; Reifel Miller, A., The Discovery, Preclinical, and Early Clinical
Development of Potent and Selective GPR40 Agonists for the
Treatment of Type 2 Diabetes Mellitus (LY2881835, LY2922083,
and LY2922470). Journal of medicinal chemistry 2016, 59 (24),
10891-10916.
(16) Chen, C.; Li, H.; Long, Y. Q., GPR40 agonists for the
treatment of type 2 diabetes mellitus: The biological characteristics
and the chemical space. Bioorganic & medicinal chemistry letters
2016, 26 (23), 5603-5612.
(17) Krasavin, M.; Lukin, A.; Zhurilo, N.; Kovalenko, A.;
Zahanich, I.; Zozulya, S.; Moore, D.; Tikhonova, I. G., Novel free
fatty acid receptor 1 (GPR40) agonists based on 1,3,4-thiadiazole-
2-carboxamide scaffold. Bioorganic & medicinal chemistry 2016,
24 (13), 2954-2963.
(18) Tikhonova, I. G.; Sum, C. S.; Neumann, S.; Engel, S.; Raaka,
B. M.; Costanzi, S.; Gershengorn, M. C., Discovery of novel
agonists and antagonists of the free fatty acid receptor 1 (FFAR1)
using virtual screening. Journal of medicinal chemistry 2008, 51
(3), 625-33.
(19) Christiansen, E.; Urban, C.; Grundmann, M.; Due-Hansen,
M.E.; Hagesaether, E.; Schmidt, J.; Pardo, L.; Ullrich, S.;
Kostenis,E.; Kassack, M.; Ulven, T., Identification of a potent
andselectivefree fatty acid receptor
1
(FFA1/GPR40)
agonistwithfavorable physicochemical and in vitro ADME
properties. Journalof medicinal chemistry 2011, 54 (19), 6691-703.
(20) Christiansen, E.; Due-Hansen, M. E.; Urban, C.; Merten,N.;
Pfleiderer, M.; Karlsen, K. K.; Rasmussen, S. S.; Steensgaard,M.;
Hamacher, A.; Schmidt, J.; Drewke, C.; Petersen, R. K.;
Kristiansen, K.; Ullrich, S.; Kostenis, E.; Kassack, M. U.; Ulven,
T., Structure-Activity Study of Dihydrocinnamic Acids and
Discovery of the Potent FFA1 (GPR40) Agonist TUG-469. ACS
medicinal chemistry letters 2010, 1 (7), 345-9.
(21) Sharma, R.; Akerman, M.; Cardozo, M. G.; J. B. Houze, J.
B.;Li, A.; Liu, J. Q.; Liu, J. W.; Ma, Z. H.; Medina, J. C.; Schmitt,
J. M.; Sun, Y.; Wang, Y. C.; Wang, Z. Y.; Zhu, L. S. Bicyclic
carboxylic acid derivatives useful for treating metabolic disorders.
WO 2007106469 A2, 2007.
(22) Kaushik, N. K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C. H.;
Verma, A. K.; Choi, E. H., Biomedical importance of indoles.
Molecules 2013, 18 (6), 6620-62.
(23) Srivastava, A.; Yano, J.; Hirozane, Y.; Kefala, G.; Gruswitz,F.;
Snell, G.; Lane, W.; Ivetac, A.; Aertgeerts, K.; Nguyen, J.;Jennings,
A.; Okada, K., High-resolution structure of the humanGPR40
receptor bound to allosteric agonist TAK-875. Nature2014, 513
(7516), 124-7.
Discovery of TAK-875:
A Potent, Selective, and Orally
Bioavailable GPR40 Agonist. ACS medicinal chemistry letters
2010, 1 (6), 290-4.
(12) Houze, J. B.; Zhu, L.; Sun, Y.; Akerman, M.; Qiu, W.;
Zhang,A. J.; Sharma, R.; Schmitt, M.; Wang, Y.; Liu, J.; Liu, J.;
Medina,J. C.; Reagan, J. D.; Luo, J.; Tonn, G.; Zhang, J.; Lu, J. Y.;
5
ACS Paragon Plus Environment