M. C. Elliott, M. S. Long / Tetrahedron Letters 43 (2002) 9191–9194
9193
H. L.; Hursthouse, M. B.; Malik, K. M. A. Tetrahedron
996, 52, 8315; (d) Black, G. P.; Murphy, P. J.; Walshe,
1
N. D. A.; Hibbs, D. E.; Hursthouse, M. B.; Malik, K. M.
A. Tetrahedron Lett. 1996, 37, 6943; (e) Black, G. P.;
Murphy, P. J.; Walshe, N. D. A. Tetrahedron 1998, 54,
9481; (f) Black, G. P.; Murphy, P. J.; Thornhill, A. J.;
Walshe, N. D. A.; Zanetti, C. Tetrahedron 1999, 55, 6547.
5. (a) Snider, B. B.; Chen, J. S.; Patil, A. D.; Freyer, A. J.
Tetrahedron Lett. 1996, 37, 6977; (b) Snider, B. B.; Chen,
J. Tetrahedron Lett. 1998, 39, 5697; (c) Snider, B. B.;
Busuyek, M. V. J. Nat. Prod. 1999, 62, 1707.
6. Nagasawa, K.; Koshino, H.; Nakata, T. Tetrahedron
Lett. 2001, 42, 4155.
7. Duron, S. G.; Gin, D. Y. Org. Lett. 2001, 3, 1551.
8. Rao, A. V. R.; Gurjar, M. K.; Vasudevan, J. J. Chem.
Soc., Chem. Commun. 1995, 1369.
9. (a) Louwrier, S.; Ostendorf, M.; Tuynman, A.; Hiemstra,
H. Tetrahedron Lett. 1996, 37, 905; (b) Louwrier, S.;
Ostendorf, M.; Boom, A; Hiemstra, H.; Speckamp, W.
N. Tetrahedron 1996, 52, 2603; (c) Louwrier, S.; Tuyn-
man, A.; Hiemstra, H. Tetrahedron 1996, 52, 2629.
10. (a) Franklin, A. S.; Ly, S. K.; Mackin, G. H.; Overman,
L. E.; Shaka, A. J. J. Org. Chem. 1999, 64, 1512; (b)
McDonald, A. I.; Overman, L. E. J. Org. Chem. 1999, 64,
1520; (c) Cohen, F.; Overman, L. E.; Ly Sakata, S. K.
Org. Lett. 1999, 1, 2169; (d) Cohen, F.; Overman, L. E.
J. Am. Chem. Soc. 2001, 123, 10782.
Scheme 5.
Finally, conversion of the thiourea into the required
guanidine was accomplished as shown in Scheme 5.
Serendipitously the silyl protecting group was removed
under these conditions, presumably as a result of
anchimeric assistance by the neighbouring guanidine.
The product 20 was isolated as the formate salt after
chromatography on silica gel, eluting with CH Cl /
2
2
7
MeOH/H O/formic acid (85:14:0.5:0.5).
2
Completion of the left hand side of Batzelladine A will
require removal of the hydroxymethyl group, which we
envisage will be accomplished by oxidation and either
deformylation or decarboxylation. Homologation of
this group and ring-closure will allow entry into the
tricyclic portion of the title natural products. These
studies are underway and will be reported in due
course.
11. (a) Tanino, H.; Nakata, T.; Kaneko, T.; Kishi, Y. J. Am.
Chem. Soc. 1977, 99, 2818; (b) Kishi, Y. Heterocycles
Acknowledgements
1980, 14, 1477; (c) Hong, C. Y.; Kishi, Y. J. Am. Chem.
Soc. 1992, 114, 7001.
1
2. For example, see: Thanh, G. V.; C e´ l e´ rier, J.-P.; Lhomet,
G. Tetrahedron: Asymmetry 1996, 7, 2211. This report
used an acetate protecting group which would be incom-
patible with subsequent steps in our synthesis.
We would like to thank the EPSRC for a studentship
(
to M.S.L.) and Cardiff University and The Royal
Society for additional support. We gratefully acknowl-
edge the EPSRC Mass Spectrometry Service, University
of Wales Swansea, for the provision of high-resolution
mass spectrometric data.
13. Bachi, M. D.; Breiman, R.; Meshulam, H. J. Org. Chem.
1983, 48, 1439.
1
4. Bahaji, H.; Bastide, P.; Bastide, J.; Rubat, C.; Tronche,
P. Eur. J. Med. Chem. 1988, 23, 193.
1
5. We have some concerns about the structural assignments
as given in Ref. 14. For instance, for compound 21 the
chemical shift of the alkene hydrogen was reported as 7.6
ppm, while that in compound 22 is reported as 6.5 ppm.
Additionally these compounds give peaks assigned to
N–H hydrogens at 7.3 and 5.4 ppm respectively. In
comparison, the alkene hydrogen in compound 13 res-
onates at 4.5 ppm.
References
1
. (a) Elliott, M. C.; Kruiswijk, E. Chem. Commun. 1997,
311; (b) Elliott, M. C.; Kruiswijk, E.; Willock, D. J.
Tetrahedron Lett. 1998, 39, 8911; (c) Elliott, M. C.;
Monk, A. E.; Kruiswijk, E.; Hibbs, D. E.; Jenkins, R. L.;
Jones, D. V. Synlett 1999, 1379; (d) Elliott, M. C.;
Kruiswijk, E. J. Chem. Soc., Perkin Trans. 1 1999, 3157;
2
(e) Elliott, M. C.; Kruiswijk, E; Willock, D. J. Tetra-
hedron 2001, 57, 10139.
2
. (a) Patil, A. D.; Kumar, N. V.; Kokke, W. C.; Bean, M.
F.; Freyer, A. J.; De Brosse, C.; Mai, S.; Truneh, A.;
Faulkner, D. J.; Cart e´ , B.; Breen, A. L.; Hertzberg, R. P.;
Johnson, R. K.; Westley, J. W.; Potts, B. C. M. J. Org.
Chem. 1995, 60, 1182; (b) Patil, A. D.; Freyer, A. J.;
Taylor, P. B.; Cart e´ , B.; Zuber, G.; Johnson, R. K.;
Faulkner, D. J. J. Org. Chem. 1997, 62, 1814.
Comparison with other examples in the literature show
3
. For a review, see: Heys, L.; Moore, C. G.; Murphy, P. J.
Chem. Soc. Rev. 2000, 29, 57.
that for compound 22 the reported shift is typical, while
17
that in 21 seems to us to be too high. The differing
reaction conditions for the formation of the two com-
pounds should also be considered. Compound 21 was
formed under reflux (benzene) while 22 was formed at
room temperature. It is reasonable to expect C-acylation
4. (a) Murphy, P. J.; Williams, H. L.; Hursthouse, M. B.;
Malik, K. M. A. J. Chem. Soc., Chem. Commun. 1994,
1
19; (b) Murphy, P. J.; Williams, H. L. J. Chem. Soc.,
Chem. Commun. 1994, 819; (c) Murphy, P. J.; Williams,