Ple aDs ea l dt oo nn ot Ta rd j au ns ts ma ca tr g ii on sn s
Page 4 o f
COMMUNICATION
Journal Name
In conclusion, we have successfully prepared a dinuclear iron
DOI: 10.1039/C6DT01554A
(a) Q. Yin, J. M. Tan, C. Besson, Y. V. Geletii, D. G. Musaev, A.
complex bearing the designed ligand scaffold H L and
5
6
7
5
E. Kuznetsov, Z. Luo, K. I. Hardcastle and C. L. Hill, Science,
2010, 328, 342–345; (b) T. Nakazono, A. Rene Parent and K.
Sakai, Chem. Commun., 2013, 49, 6325–6327; (c) B. Das, A.
demonstrated that this complex can oxidize water, when
3+
driven by [Ru(bpy) ] ‐type oxidants. Kinetic experiments
3
revealed
concentration, suggesting that water oxidation occurs within
the two iron centers in complex . DLS experiments together
a
first‐order dependence on the catalyst
Orthaber, S. Ott and A. Thapper, Chem. Commun., 2015, 51
,
1
3074–13077.
3
(a) W. C. Ellis, N. D. McDaniel, S. Bernhard and T. J. Collins, J.
Am. Chem. Soc., 2010, 132, 10990–10991; (b) C. Panda, J.
Debgupta, D. Díaz Díaz, K. K. Singh, S. Sen Gupta and B. B.
Dhar, J. Am. Chem. Soc., 2014, 136, 12273–12282; (c) R.‐Z.
Liao, X.‐C. Li and P. E. M. Siegbahn, Eur. J. Inorg. Chem., 2014,
28–741.
(a) J. L. Fillol, Z. Codolà, I. Garcia‐Bosch, L. Gómez, J. J. Pla
and M. Costas, Nature Chem., 2011, , 807–813; (b) Z.
Codolà, I. Garcia‐Bosch, F. Acuña‐Parés, I. Prat, J. M. Luis, M.
Costas and J. Lloret‐Fillol, Chem. Eur. J., 2013, 19, 8042–
047; (c) D. Hong, S. Mandal, Y. Yamada, Y.‐M. Lee, W. Nam,
A. Llobet and S. Fukuzumi, Inorg. Chem., 2013, 52, 9522–
9531; (d) B. M. Klepser and B. M. Bartlett, J. Am. Chem. Soc.,
with the observation that simple iron(II) salts do not form
active catalysts in phosphate buffer solutions indicate that the
catalytically active species is molecular in nature and that in
situ formation of iron oxide nanoparticles does not contribute
7
to catalysis. Furthermore, the nonanuclear iron cluster
found to oxidize water with a slightly better activity than the
dinuclear complex , illustrating that the design of higher
4 was
3
3
order iron complexes housing proper ligand systems may be a
viable strategy for producing more efficient iron‐based
catalysts for water oxidation, which is in line with a recent
8
25
2
014, 136, 1694–1697; (e) F. Acuña‐Parés, Z. Codolà, M.
Costas, J. M. Luis and J. Lloret‐Fillol, Chem. Eur. J., 2014, 20
696–5707; (f) M. K. Coggins, M.‐T. Zhang, A. K. Vannucci, C.
J. Dares and T. J. Meyer, J. Am. Chem. Soc., 2014, 136, 5531–
534; (g) A. R. Parent, T. Nakazono, S. Lin, S. Utsunomiya and
report on a pentanuclear iron complex.
,
Financial support from the Knut and Alice Wallenberg
Foundation, the Swedish Research Council (621‐2013‐4872),
the Carl Trygger Foundation, DFG (joint IRTG Metal Sites in
Biomolecules: Structures, Regulation and Mechanisms; see
www.biometals.eu) and the Swedish Energy Agency, is
gratefully acknowledged.
5
5
K. Sakai, Dalton Trans., 2014, 43, 12501–12513; (h) F. Acuña‐
Parés, M. Costas, J. M. Luis and J. Lloret‐Fillol, Inorg. Chem.,
014, 53, 5474–5485; (i) B. Das, A. Orthaber, S. Ott and A.
2
Thapper, ChemSusChem, DOI: 10.1002/cssc.201600052.
(a) S. M. Barnett, K. I. Goldberg and J. M. Mayer, Nature
8
9
Chem., 2012,
Chen, N. Song and T. J. Meyer, Angew. Chem. Int. Ed., 2014,
, 12226–12230; (c) T. Zhang, C. Wang, S. Liu, J.‐L. Wang
4, 498–502; (b) M. K. Coggins, M.‐T. Zhang, Z.
Notes and references
5
3
and W. Lin, J. Am. Chem. Soc., 2014, 136, 273–281; (d) W.‐B.
Yu, Q.‐Y. He, X.‐F. Ma, H.‐T. Shi and X. Wei, Dalton Trans.,
1
2
(a) N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A.,
006, 103, 15729–15735; (b) M. D. Kärkäs, E. V. Johnston, O.
2
2
015, 44, 351–358.
Verho and B. Åkermark, Acc. Chem. Res., 2014, 47, 100–111;
(a) M. D. Kärkäs, O. Verho, E. V. Johnston and B.
Åkermark, Chem. Rev., 2014, 114, 11863–12001; (b) J. D.
Blakemore, R. H. Crabtree and G. W. Brudvig, Chem. Rev.,
(a) R. Brimblecombe, A. Koo, G. C. Dismukes, G. F. Swiegers
and L. Spiccia, J. Am. Chem. Soc., 2010, 132, 2892–2894; (b)
W. A. A. Arafa, M. D. Kärkäs, B.‐L. Lee, T. Åkermark, R.‐Z.
Liao, H.‐M. Berends, J. Messinger, P. E. M. Siegbahn and B.
Åkermark, Phys. Chem. Chem. Phys., 2014, 16, 11950–11964;
2
015, 115, 12974–13005.
(
c) E. A. Karlsson, B.‐L. Lee, R.‐Z. Liao, T. Åkermark, M. D.
Kärkäs, V. Saavedra Becerril, P. E. M. Siegbahn, X. Zou, M.
Abrahamsson and B. Åkermark, ChemPlusChem, 2014, 79
36–950.
3
4
For discussions on solar‐driven water‐splitting devices, see: (a) J.
R. McKone, N. S. Lewis and H. B. Gray, Chem. Mater., 2014, 26,
,
4
07–414; (b) M. S. Burke, L. J. Enman, A. S. Batchellor, S. Zou
9
and S. W. Boettcher, Chem. Mater., 2015, 27, 7549–7558.
(a) Y. V. Geletii, Z. Huang, Y. Hou, D. G. Musaev, T. Lian and C.
L. Hill, J. Am. Chem. Soc., 2009, 131, 7522–7523; (b) Y. Xu, A.
10 E. A. Karlsson, B.‐L. Lee, T. Åkermark, E. V. Johnston, M. D.
Kärkäs, J. Sun, Ö. Hansson, J.‐E. Bäckvall and B. Åkermark,
Angew. Chem. Int. Ed., 2011, 50, 11715–11718.
Fischer, L. Duan, L. Tong, E. Gabrielsson, B. Åkermark and L. 11 L. Wang, L. Duan, R. B. Ambre, Q. Daniel, H. Chen, J. Sun, B.
Sun, Angew. Chem. Int. Ed., 2010, 49, 8934–8937; (c) N.
Das, A. Thapper, J. Uhlig, P. Dinér, L. Sun, J. Catal., 2016, 335,
Kaveevivitchai, R. Chitta, R. Zong, M. El Ojaimi and R. P.
72–78.
Thummel, J. Am. Chem. Soc., 2012, 134, 10721–10724; (d) 12 For recent reviews on earth‐abundant water oxidation catalysts,
M. D. Kärkäs, T. Åkermark, E. V. Johnston, S. R. Karim, T. M.
Laine, B.‐L. Lee, T. Åkermark, T. Privalov and B. Åkermark,
Angew. Chem. Int. Ed., 2012, 51, 11589–11593; (e) M. D.
Kärkäs, T. Åkermark, H. Chen, J. Sun and B. Åkermark,
Angew. Chem. Int. Ed., 2013, 52, 4189–4193; (f) S. Neudeck,
S. Maji, I. Lopez, S. Meyer, F. Meyer and A. Llobet, J. Am.
Chem. Soc., 2014, 136, 24–27; (g) T. M. Laine, M. D. Kärkäs,
R.‐Z. Liao, T. Åkermark, B.‐L. Lee, E. A. Karlsson, P. E. M.
see: (a) P. Du and R. Eisenberg, Energy Environ. Sci., 2012, 5,
012–6021; (b) A. Sartorel, M. Bonchio, S. Campagna and F.
Scandola, Chem. Soc. Rev., 2013, 42, 2262–2280; (c) J. R. Galán‐
Mascarós, ChemElectroChem, 2015, 2, 37–50; (d) A. Asraf, H. A.
Younus, M. Yusubov and F. Verpoort, Catal. Sci. Technol., 2015,
6
5
, 4901–4925; (e) M. D. Kärkäs and B. Åkermark, Dalton Trans.,
DOI: 10.1039/c6dt00809g.
Siegbahn and B. Åkermark, Chem. Commun., 2015, 51, 1862– 13 P. Huang, A. Magnuson, R. Lomoth, M. Abrahamsson, M.
Tamm, L. Sun, B. van Rotterdam, J. Park, L. Hammarström, B.
1
865; (h) A. C. Sander, S. Maji, L. Francas, T. Böhnisch, S.
Dechert, A. Llobet and F. Meyer, ChemSusChem, 2015,
8,
Åkermark, J. Inorg. Biochem., 2002, 91, 159–172.
1
697–1702; (i) M. D. Kärkäs, R.‐Z. Liao, T. M. Laine, T. 14 M. F. Anderlund, J. Zheng, M. Ghiladi, M. Kritikos, E. Rivière,
L. Sun, J.‐J. Girerd and B. Åkermark, Inorg. Chem. Commun.,
2006, , 1195–1198.
Åkermark, S. Ghanem, P. E. M. Siegbahn and B. Åkermark,
Catal. Sci. Technol., 2016,
6, 1306–1319; (j) M. D. Kärkäs and
9
B. Åkermark, Chem. Rec., 2016, 16, 940–963.
4
| J. Name., 2012, 00, 1‐3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins