278
M. Nagel et al.
LETTER
reaction mixture was poured into cold water (1 L ) and t-
BuOMe (500 mL) were added. With stirring, a 10% aqueous
HCl solution was added until the slimy or gel-like
consistency of the mixture disappeared, and the mixture
became clear and two-phased (pH < 3). The organic phase
was washed several times with water, then with sat. NaHCO3
solution, and brine. After drying (MgSO4) and evaporation
of the solvent under reduced pressure, the crude 1-
vinylcyclododecanol 6 (GC purity about 90%) was purified
either by bulb-to-bulb distillation (HV) and subsequent
crystallization from hexane–t-BuOMe (95:5, v/v) or by
chromatography on a short column (silica gel, eluent,
hexane–t-BuOMe 97:3-95:5). Allylic alcohol 6 was
obtained in yields of 75–85% as a colorless waxy solid (mp
53 °C). 1H NMR (300 MHz, CDCl3): 5.98 (dd, J = 10.8, 17.4
Hz, 1 H), 5.20 (dd, J = 1.4, 17.4 Hz, 1 H), 5.01 (dd, J = 1.4,
10.8 Hz, 1 H), 1.9–1.2 (m, 23 H). 13C NMR (75 MHz,
CDCl3): 145.3 (d); 111.0 (t); 75.3 (s); 34.6(2), 26.3(2), 25.9,
22.5(2), 22.1(2), 19.5(2)(6 t). EI-MS (GC/MS): 210.2 (2,
M+), 192.2 (50, M – 18), 77.7(98), 67(100), 55(97). Also
see: (c) Marcou, A.; Normant, H. Bull. Soc. Chim. Fr. 1965,
3491. (d) Herz, W.; Juo, R.-R. J. Org. Chem. 1985, 50, 618.
(e) Ref. 6a.
(8) (a) Ruzicka, L. Helv. Chim. Acta 1926, 9, 245. (b) Mathur,
H. H.; Bhattacharyya, S. C. J. Chem. Soc. 1963, 114.
(c) Motoda, O. Chem. Abstr. 1950, 5828. (d) Williams, A.
S. Synthesis 1999, 1707; and references therein.
(9) (a) Baldwin, J. E.; Vollmer, H. R.; Lee, V. Tetrahedron Lett.
1999, 40, 5401. (b) Satoh, T.; Itoh, N.; Gengyo, K.; Takada,
S.; Asakawa, N. Tetrahedron 1994, 50, 11839.
(c) Hashimoto, N.; Aoyama, T.; Shioiri, T. Chem. Pharm.
Bull. 1982, 30, 119. (d) Karpf, M.; Dreiding, A. S. Helv.
Chim. Acta 1975, 58, 2409. (e) Taguchi, H.; Yamamoto, H.;
Nozaki, H. J. Am. Chem. Soc. 1974, 96, 6510. (f) Kirchhof,
W.; Stumpf, W.; Franke, W. Liebigs Ann. Chem. 1965, 681,
32. (g) Parham, W. E.; Sperley, R. J. J. Org. Chem. 1967,
926; see also ref.6f,g
.
(10) For leading references to Exaltone®(12), see: (a) Fráter, G.;
Bajgrowicz, J. A.; Kraft, P. Tetrahedron 1998, 54, 7633.
(b) Fráter, G.; Lamparsky, D. In Perfumes: Art, Science and
Technology; Müller, P. M.; Lamparsky, D., Eds.; Elsevier:
London, New York, 1991, Chap. 20, 533–555. (c) Ohloff,
G. Helv. Chim. Acta 1992, 75, 2041; and literature cited
therein. (d) Ohloff, G. Riechstoffe und Geruchssinn. Die
molekulare Welt der Düfte; Springer: Berlin, 1990, Chap. 9,
195–219. (e) Mookherjee, B. D.; Wilson, R. A. In
(5) The thermo-isomerization process was performed in flow
reactor systems with different dimensions: e.g., a quartz tube
reactor (40 cm length, 22 mm, and 40 mm i.d., respectively)
heated by a tube furnace (35 cm single temperature zone, in
a nearly horizontal position), cf. also: (a) Nagel, M.
Diploma Thesis; University of Zürich: Switzerland, 1998.
(b) Nagel, M.; Hansen, H.-J. Helv. Chim. Acta 2000, 83,
1022. (c) Typical Procedure: After evacuation of the
apparatus with a high-vacuum oil pump, the starting material
(typically 0.5–2 g) was distilled slowly (within 10–20 min,
about 5–20 g/h) through the preheated reactor tube (contact
times estimated at about 1–2 s). A flow of inert gas (N2 or
Ar) was adjusted from 15 mL/min to over 50 mL/min (1–3
L/h). At the end of the reactor unit the high boiling
isomerization products were collected in the first cooling
trap at about 0 °C (85–90% recovery), and the more volatile
side products in subsequent traps, which were cooled to
lower temperatures. By adding filling materials into the
reactor, surface-catalyzed side reactions (e.g. dehydration)
become predominant (cf. ref.2b and also ref.13). For more
general reviews on short contact time reactions and synthetic
applications of gas phase flash vacuum pyrolysis techniques,
see also: (d) McNab, H. Contemp. Org. Synth. 1996, 3, 373;
and references therein. (e) Cadogen, J. I. G.; Hickson, C. L.;
McNab, H. Tetrahedron 1986, 42, 2135. (f) Schiess, P.
Thermochim. Acta 1987, 112, 31; and references therein.
(g) Wiersum, U. E. Alrdrichimica Acta 1984, 17, 31.
(6) For syntheses of 7, see e.g.: (a) Galatsis, P.; Millan, S. D.;
Faber, T. J. Org. Chem. 1993, 58, 1215. (b) Bienz, S.;
Hesse, M. Helv.Chim. Acta 1987, 70, 2146. (c)Drotloff,H.;
Rotter, H.; Emeis, D.; Moeller, M. J. Am. Chem. Soc. 1987,
109, 7797. (d) Porter, N. A.; Chang, V. H.-T.; Magnin, D.
R.; Wright, B. T. J. Am. Chem. Soc. 1988, 110, 3554.
(e) Porter, N. A.; Magnin, D. R.; Wright, B. T. J. Am. Chem.
Soc. 1986, 108, 2787. (f) Wender, P. A.; Sieburth, McN. S.;
Petraitis, J. J.; Singh, S. K. Tetrahedron 1981, 37, 3967.
(g) Karpf, M.; Dreiding, A. S. Helv. Chim. Acta 1975, 58,
2409. (h) Mühlstädt, M.; Gräfe, J. Chem. Ber. 1967, 100,
223. (i) Müller, E.; Bauer, M. Justus Liebigs Ann. Chem.
1962, 654, 92.
Fragrance Chemistry: The Science of the Sense of Smell;
Theimer, E. T., Ed.; Academic Press: New York, 1982,
Chap. 12, 433–494. (f) Bienz, S.; Hesse, M. Helv. Chim.
Acta 1988, 71, 1704; see also ref.6b. (g) Suginome, H.;
Yamada, S. Tetrahedron Lett. 1987, 28, 3963. (h)Feldhues,
M.; Schäfer, H. J. Tetrahedron 1986, 42, 1285. (i) Mehta,
G.; Rao, K. S. Tetrahedron Lett. 1984, 25, 1839. (j) Fehr,
Ch. Helv. Chim. Acta 1983, 66, 2512. (k) Kato, T.; Kondo,
H.; Miyake, A. Bull. Chem. Soc. Jpn. 1980, 53, 823.
(l) Karpf, M.; Dreiding, A. S. Helv. Chim. Acta 1977, 60,
3045.
(11) To the best of our knowledge, this two-carbon ring
enlargement procedure is one of the shortest repeatable ring
expansion reactions applied to carbocyclic systems:
Examples of preparatively useful and efficiently repeatable
ring expansion reactions by more than one carbon atom in
carbocyclic systems are only rarely reported in the literature.
For a definition and examples, see: (a) Heimgartner, H.
Chimia 1980, 34, 333; and references therein. (b) Hesse, M.
Ring Enlargement in Organic Chemistry; VCH: Weinheim,
Germany, 1990, Chap. 5, 73–95; and references therein.
(12) Thies, R. W.; Billigmeier, J. E. J. Am. Chem. Soc. 1974, 96,
200; and references therein.
(13) (a) Failes, R. L.; Stimson, V. R. In The Chemistry of the
Hydroxy Group; Patai, S., Ed.; Wiley: Chichester, 1980,
Chap. 11, 449–468; and references therein.. (b) Grignard,
V.; Chambret, F. C. R. Hebd. Acad.Sci. 1926, 182, 299.
(c) Holmes, J. L.; Lossing, F. P. J. Am. Chem. Soc. 1982,
104, 2648. (d) Chuchani, G.; Rotinov, A.; Dominguez, R.
Int. J. Chem. Kinet. 1999, 31, 401.
(14) For a recent general survey and leading references, see:
Hudlicky, T.; Becker, D. A.; Fan, R. L.; Kozhushkov, S. I. In
Houben-Weyl, Vol. E17c; de Meijere, A., Ed.; Thieme:
Stuttgart, 1997, 2538–2565.
(15) See also: (a) Gutsche, C. D.; Redmore, D. Carbocyclic Ring
Expansion Reactions; Academic Press: New York, 1968,
Chap. 9, 161–173. (b) Gajewsky, J. J. Hydrocarbon
Thermal Isomerizations; Academic Press: New York, 1982,
81–87 and 177-185. (c) Salaün, J. In The Chemistry of the
Cyclopropyl Group; Patai, S.; Rappoport, Z., Eds.; Wiley:
New York, 1987, 809–878. (d) Baldwin, J. E. In The
Chemistry of the Cyclopropyl Group, Vol 2; Rappoport, Z.,
(7) For syntheses of 9, see: (a) Weiper-Idelmann, A.; Kahmen,
M.; Schäfer, H. J.; Gockeln, M. Acta Chem. Scand. 1998, 52,
672. (b) Nishino, M.; Kondo, H.; Miyake, A. Chem. Lett.
1973, 667.
Synlett 2002, No. 2, 275–279 ISSN 0936-5214 © Thieme Stuttgart · New York