with thermal CVD can be used to deposit metal nanostruc-
tures. Fe is grown selectively onto depassivated regions of
Si͑100͒:H 2ϫ1 surfaces by Fe͑CO͒5 pyrolysis at 275 °C. The
monohydride resist remains intact during gas exposure, with
only limited nucleation occurring on H-terminated Si. The
effect of hydrogen is to increase the barrier to nucleation
compared with growth on clean Si͑100͒. This is demon-
strated with the construction of 10 nm wide lines. In general,
we feel that this technique could be useful for locally depos-
iting other metals via CVD or for fabricating novel quantum-
effect electronic devices. The success of this technique relies
upon choosing a CVD gas system in which nucleation is
dominated by site-specific chemical reactions.
The authors thank J. Banks and J. Knapp of Sandia Na-
tional Laboratories for the HIBS work. This study was sup-
ported by the U.S. Department of Energy under Contract No.
DE-AC04-94AL85000.
FIG. 4. HIBS spectra showing Fe metal content after 60 L Fe͑CO͒ dose at
275 °C for ͑a͒ a clean Si͑100͒ surface and ͑b͒ a Si͑100͒:H 2ϫ1 surface.
5
Nucleation during Fe CVD growth is dominated by site-
specific chemical reactivity of the precursor with the sub-
strate. Previous work has shown that decomposition of the
Fe͑CO͒5 molecule occurs predominantly at Si dangling bond
sites.22 Passivation of the dangling bond sites with hydrogen
removes the active site for pyrolysis and effectively raises
the activation barrier for nucleation. Previous studies have
also shown that Fe CVD is autocatalytic on Si—i.e., the
barrier to dissociation of the precursor on an existing Fe
cluster is smaller than on the clean Si surface ͑about 0.14 eV
on Fe and 0.40 eV on Si͒.22,23 Therefore, once a nucleus is
created, it grows rapidly compared to the formation of addi-
tional clusters. This highly nonlinear growth rate is advanta-
geous in maintaining the area selectivity of metal deposition.
This technique appears to be well-suited for fabrication
of sub-10 nm sized metal structures. Control over feature
size at this level is evident. The two Fe metal lines shown in
Fig. 3 have approximately the same width as the depassi-
vated areas defined by the STM, ϳ10.0 nm. Further reduc-
tion in linewidth may be achieved by defining even smaller
areas during H removal. In this work, we have produced
continuous depassivated lines of Si with a width as small as
2.5 nm. Other studies have demonstrated continuous lines
with widths as small as 1.0 nm, i.e., of single dimer width.19
In general, depassivated Si linewidths can be tailored by
changing line dose, tip voltage, or tip-sample separation.20
Future work will focus on how the width of metal lines is
influenced by continued metal precursor exposure and
growth. It is expected that lateral, i.e., in-plane, growth will
occur as the line is thickened. We note that the lines shown
in Fig. 3 are only partially continuous. Since growth is auto-
catalytic, however, metal deposits may easily be thickened
without nucleating an appreciable number of additional clus-
ters on H-covered areas.
1 H. J. Mamin, P. H. Guethner, and D. Rugar, Phys. Rev. Lett. 65, 2418
͑1990͒.
2 M. F. Crommie, C. P. Lutz, and D. M. Eigler, Science 262, 218 ͑1993͒.
3 E. E. Ehrichs, R. M. Silver, and A. L. de Lozanne, J. Vac. Sci. Technol. A
6, 540 ͑1988͒.
4 M. A. McCord, D. P. Kern, and T. H. P. Chang, J. Vac. Sci. Technol. B 6,
1877 ͑1988͒.
5 F. Thibaudau, J. R. Roche, and F. Salvan, Appl. Phys. Lett. 64, 523
͑1994͒.
6 M. A. McCord and R. F. W. Pease, J. Vac. Sci. Technol. B 6, 293 ͑1988͒.
7 E. A. Dobisz and C. R. K. Marrian, Appl. Phys. Lett. 58, 2526 ͑1991͒.
8 M. J. Lercel, G. F. Redinbo, H. G. Craighead, C. W. Sheen, and D. L.
Allara, Appl. Phys. Lett. 65, 974 ͑1994͒.
9 F. K. Perkins, E. A. Dobisz, S. L. Brandon, T. S. Koloski, J. M. Calvert,
K. W. Rhee, J. E. Kosakowski, and C. R. K. Marrian, J. Vac. Sci. Technol.
B 12, 3725 ͑1994͒.
10 D. M. Eigler and E. K. Schweizer, Nature 344, 524 ͑1990͒.
11 A. D. Kent, S. von Molnar, S. Gider, and D. D. Awschalom, J. Appl.
Phys. 76, 6656 ͑1994͒.
12 K. Masu and K. Tsubouchi, J. Vac. Sci. Technol. B 12, 3270 ͑1994͒.
13 J. W. Lyding, T.-C. Shen, J. S. Hubacek, J. R. Tucker, and G. C. Abeln,
Appl. Phys. Lett. 64, 2011 ͑1994͒; T.-C. Shen, C. Wang, J. W. Lyding,
and J. R. Tucker, Appl. Phys. Lett. 66, 976 ͑1995͒.
14 J. A. M. Sondag-Heuthorst, H. R. J. van Helleputte, and L. G. J. Fokkink,
Appl. Phys. Lett. 64, 285 ͑1994͒.
15 J. K. Schoer, C. B. Ross, R. M. Crooks, T. S. Corbitt, and M. J. Hampden-
Smith, Langmuir 10, 615 ͑1994͒.
16 R. S. Becker, G. S. Higashi, Y. J. Chabal, and A. J. Becker, Phys. Rev.
Lett. 65, 1917 ͑1990͒.
17 J. J. Boland, Surf. Sci. 244, 1 ͑1991͒.
18 T.-C. Shen, C. Wang, G. C. Abeln, J. R. Tucker, J. W. Lyding, Ph.
Avouris, and R. E. Walkup, Science 268, 1590 ͑1995͒.
19 Ph. Avouris, Acc. Chem. Res. 28, 95 ͑1995͒.
20 D. P. Adams, T. M. Mayer, and B. S. Swartzentruber, J. Vac. Sci. B
͑1996͒, in press.
21 W. L. Gladfelter, Chem. Mater. 5, 1372 ͑1993͒.
22 D. P. Adams, L. L. Tedder, T. M. Mayer, B. S. Swartzentruber, and E.
Chason, Phys. Rev. Lett. 74, 5088 ͑1995͒.
23 R. R. Kunz and T. M. Mayer, J. Vac. Sci. Technol. B 6, 1557 ͑1988͒.
24 J. J. Boland, Phys. Rev. Lett. 65, 3325 ͑1990͒.
To conclude, we have shown that a two-step technique,
that combines STM patterning of atomic-scale resists ͑H͒
25 J. S. Foord and R. B. Jackman, Surf. Sci. 171, 197 ͑1986͒.
26 D. W. Moon, D. J. Dwyer, and S. L. Bernasek, Surf. Sci. 163, 215 ͑1985͒.
2212 Appl. Phys. Lett., Vol. 68, No. 16, 15 April 1996 Adams, Mayer, and Swartzentruber
140.254.87.149 On: Fri, 19 Dec 2014 23:34:56