14
J.G. Seo et al. / Journal of Molecular Catalysis A: Chemical 268 (2007) 9–14
[3] K.J. Lee, D. Park, Korean J. Chem. Eng. 15 (1998) 658.
4. Conclusions
[4] K.D. Ko, J.K. Lee, D. Park, S.H. Shin, Korean J. Chem. Eng. 12 (1995)
478.
A series of Al2O3–ZrO2 (AZ-X) supports with various
zirconium loadings were prepared by grafting a zirconium
precursor onto the surface of ␥-Al2O3. Ni/Al2O3–ZrO2 cata-
lysts were then prepared by an impregnation method for use
in the hydrogen production by steam reforming of LNG. The
effect of Al2O3–ZrO2 supports on the performance of the
Ni/Al2O3–ZrO2 catalysts was investigated. It was found that
ZrO2 inhibited the incorporation of nickel species into the lattice
of Al2O3 and prevented the growth of metallic nickel parti-
cles during the reduction process through the formation of a
new ZrO2–Al2O3 composite structure. The crystalline structures
and catalytic activities of the 20Ni/AZ-X catalysts were strongly
influenced by the amount of zirconium grafted. In the hydrogen
production by steam reforming of LNG, LNG conversion and
hydrogen yield showed volcano-shaped curves with respect to
zirconium loading. Both LNG conversion and hydrogen yield
were decreased in the order of 20Ni/AZ-2 (Zr/Al = 0.17) >
20Ni/AZ-3 (Zr/Al = 0.31) > 20Ni/AZ-1 (Zr/Al = 0.09) > 20Ni/
AZ-4 (Zr/Al = 0.45) > 20Ni/AZ-0 (Zr/Al = 0). Among the cat-
alysts tested, the 20Ni/AZ-2 catalyst showed the best catalytic
performance. The well-developed and pure tetragonal phase of
AZ-2 played an important role in the adsorption of steam and
the subsequent spillover of steam from the support to the active
nickel. It is concluded that Al2O3–ZrO2 (AZ-X) prepared by a
grafting method served as an efficient support for the nickel cat-
alyst in the hydrogen production by steam reforming of LNG,
and that an optimum ratio of ZrO2/Al2O3 was required for the
maximum performance of 20Ni/AZ-X catalysts.
[5] Z.-W. Liu, K.-W. Jun, H.-S. Roh, S.-E. Park, J. Power Sources 111 (2002)
283.
[6] T. Takeguchi, Y. Kani, T. Yano, R. Kikuchi, K. Eguchi, K. Tsujimoto, Y.
Uchida, A. Ueno, K. Omoshiki, M. Aizawa, J. Power Sources 112 (2002)
588.
[7] Q. Ming, T. Healey, L. Allen, P. Irving, Catal. Today 77 (2002) 51.
[8] J. Sehested, J.A.P. Gelten, I.N. Remediakis, H. Bengaard, J.K. Nørskov, J.
Catal. 223 (2004) 432.
[9] T. Borowiecki, G. Wojciech, D. Andrzej, Appl. Catal. A 270 (2004) 27.
[10] T. Borowiecki, A. Goiebiowski, B. Stasinska, Appl. Catal. A 153 (1997)
141.
[11] J.S. Lisboa, D.C.R.M. Santos, F.B. Passos, F.B. Noronha, Catal. Today 101
(2005) 15.
[12] S. Natesakhawat, R.B. Watson, X. Wang, U.S. Ozkan, J. Catal. 234 (2005)
496.
[13] H.-S. Roh, K.-W. Jun, S.-E. Park, Appl. Catal. A 251 (2003) 275.
[14] R. Takahashi, S. Sato, T. Sodesawa, M. Yoshida, S. Tomiyama, Appl. Catal.
A 273 (2004) 211.
[15] M.E.S. Hegarty, A.M. O’Connor, J.R.H. Ross, Catal. Today 42 (1998)
225.
[16] Y. Matsumura, T. Nakamori, Appl. Catal. A 258 (2004) 107.
[17] Q.-H. Zhang, Y. Li, B.-Q. Xu, Catal. Today 98 (2004) 601.
[18] M. Souza, D. Aranda, M. Schmal, J. Catal. 204 (2001) 498.
[19] F. Pompeo, N.N. Nichio, O.A. Ferretti, D. Resasco, Int. J. Hydrogen Energy
30 (2005) 1399.
[20] G. Li, W. Li, M. Zhang, K. Tao, Catal. Today 93 (2004) 595.
[21] T. Klimova, M.L. Rojas, P. Castillo, R. Cuevas, Micropor. Mesopor. Mater.
20 (1998) 293.
[22] P. Iengo, M.D. Serio, V. Solinas, D. Gazzoli, G. Salvio, E. Santacesaria,
Appl. Catal. A 170 (1998) 225.
[23] P. Kim, J.B. Joo, W. Kim, H. Kim, I.K. Song, J. Yi, Carbon 43 (2005)
2409.
[24] M.V. Landau, E. Dafa, M.L. Kaliya, T. Sen, M. Herskowitz, Micropor.
Mesopor. Mater. 49 (2001) 65.
[25] T. Yamaguchi, Catal. Today 20 (1994) 199.
[26] T. Ueckert, R. Lamber, N.I. Jaeger, U. Schubert, Appl. Catal. A 155 (1997)
75.
[27] G. Li, L. Hu, J.M. Hill, Appl. Catal. A 301 (2006) 16.
[28] M.H. Youn, J.G. Seo, P. Kim, I.K. Song, J. Mol. Catal. A 261 (2007)
276.
Acknowledgements
The authors wish to acknowledge support from the Seoul
Renewable Energy Research Consortium (Seoul R & BD Pro-
gram) and RCECS (Research Center for Energy Conversion and
Storage: R11-2002-102-00000-0).
[29] P. Kim, Y. Kim, H. Kim, I.K. Song, J. Yi, Appl. Catal. A 272 (2004)
157.
[30] E.D. Dimotakis, T.J. Pinnavaia, Inorg. Chem. 29 (1990) 2393.
[31] A. Corma, V. Fornes, R.M. Aranda, F. Rey, J. Catal. 134 (1992) 58.
[32] J.A. Wang, A. Morales, X. Bokhimi, O. Novaro, Chem. Mater. 11 (1999)
308.
References
[1] J.N. Armor, Appl. Catal. A 176 (1999) 159.
[2] S.W. Nahm, S.P. Youn, H.Y. Ha, S.-A. Hong, A.P. Maganyuk, Korean J.
Chem. Eng. 17 (2000) 288.