7
506
Y.-L. Zhu et al. / Electrochimica Acta 54 (2009) 7502–7506
the Andrade’s formula (Á = Aexp(Ea/RT), A: constant), the viscosities
decreased with elevating temperature. The viscosities of BMPTFSA
containing 0.1 M Ni(II) can be fitted to the Andrade’s formula and
the activation energy was estimated to be 29 kJ mol , which is
consistent with that for diffusion coefficients.
[9] C.A. Zell, W. Freyland, Chem. Phys. Lett. 337 (2001) 293.
10] S.P. Gou, I.W. Sun, Electrochim. Acta 53 (2008) 2538.
11] O. Mannetal, G.B. Pan, W. Freyland, Electrochim. Acta 54 (2009) 2487.
12] R.J. Gale, B. Gilbert, R.A. Osteryoung, Inorg. Chem. 18 (1979) 2723.
[13] R.P. William, C.L. Hussey, J. Electrochem. Soc. 143 (1996) 130.
14] T.P. Moffat, J. Electrochem. Soc. 141 (1994) 3059.
[
[
[
−
1
[
[
[
15] O. Mann, W. Freyland, J. Phys. Chem. C 111 (2007) 9832.
16] M.R. Ali, A. Nishikata, T. Tsuru, J. Electroanal. Chem. 513 (2001) 111.
4
. Conclusions
The divalent Ni, presumably existing as [Ni(TFSA)3 ], can be
[17] W. Freyland, C.A. Zell, S.Z.E. Abedin, Electrochim. Acta 48 (2003) 3053.
[
[
18] T.C. Richard, J. Electrochem. Soc. 145 (1998) 1598.
19] A.P. Abbott, K.E. Ttaib, K.S. Ryder, E.L. Smith, Trans. Inst. Met. Finish. 86 (2008)
−
234.
reduced to metallic Ni in a hydrophobic room-temperature ionic
liquid, BMPTFSA. The diffusion coefficients of Ni(II) from chronoam-
perometric and chronopotentiometric techniques were smaller
than those reported in chloroaluminate ionic liquid probably due to
the higher viscosity of the BMPTFSA. Chronoamperometric exper-
iments showed that the initial stage of the electrodeposition of
Ni on a Pt electrode surface involved 3D instantaneous nucle-
ation/growth under diffusion control. The results revealed in this
study indicate that the BMPTFSA ionic liquid can be a promising
electrolyte for the electrodeposition of various Ni alloys.
[20] M.J. Deng, I.W. Sun, P.Y. Chen, J.K. Chang, W.T. Tsai, Electrochim. Acta 53 (2008)
5812.
[
21] D.R. MacFarlane, J. Sun, J. Golding, P. Meakin, M. Forsyth, Electrochim. Acta 45
2000) 1271.
(
[22] S.Z.E. Abedin, E.M. Moustafa, R. Hempelmann, H. Natter, F. Endres, Chem. Phys.
Chem. 7 (2006) 1535.
[
23] S.Z.E. Abedin, E.M. Moustafa, R. Hempelmann, H. Natter, F. Endres, Electrochem.
Commun. 7 (2005) 1111.
[
24] F. Bebensee, L. Klarhofer, W. Maus-Friedrichs, F. Endres, Sur. Sci. 601 (2007)
3769.
[
[
[
[
25] N. Borisenko, S.Z.E. Abedin, F. Endres, J. Phys. Chem. B 110 (2006) 6250.
26] S.Z.E. Abedin, N. Borisenko, F. Endres, Electrochem. Commun. 6 (2004) 510.
27] S.Z.E. Abedin, U.W. Biermann, F. Endres, Electrochem. Commun. 7 (2005) 941.
28] S.Z.E. Abedin, H.K. Farag, E.M. Moustafa, U. Welz-Biermanny, F. Endres, Phys.
Chem. Chem. Phys. 7 (2005) 2333.
Acknowledgments
[
29] S.Z.E. Abedin, A.Y. Saad, H.K. Farag, N. Borisenko, Q.X. Liu, F. Endres, Electrochim.
Acta 52 (2007) 2746.
The present work was financially supported by Grant-in-Aid for
Scientific Research on Priority Areas of “Science of Ionic Liquids”
[30] M.J. Deng, P.Y. Chen, I.W. Sun, Electrochim. Acta 53 (2007) 1931.
[
[
[
31] J.K. Chang, C.H. Huang, W.T. Tsai, M.J. Deng, I.W. Sun, P.Y. Chen, Electrochim.
Acta 53 (2008) 4447.
32] T. Katase, T. Onishi, S. Imashuku, K. Murase, T. Hirato, Y. Awakura, Electrochem-
istry 73 (2005) 686.
(
No. 17073016) from the Ministry of Education, Culture, Sports,
Science, and Technology, Japan (MEXT).
33] K. Fujii, T. Nonaka, Y. Akimoto, Y. Umebayashi, S. Ishiguro, Anal. Sci. 24 (2008)
1
377.
References
[
[
34] B.N. Figgis, Introduction to Ligand Fields, Interscience, 1966.
35] R. Fukui, Y. Katayama, T. Miura, Electrochemistry 73 (2005) 567.
[1] A. Lachenwitzer, S. Morin, O.M. Magnussen, R.J. Behm, Phys. Chem. Chem. Phys.
[36] A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applica-
tions, 2nd ed., John Wiley & Sons, Inc., New York, 2001.
[37] W.R. Pitner, C.L. Hussey, G.R. Stafford, J. Electrochem. Soc. 143 (1996) 130.
[38] M. Yamagata, N. Tachikawa, Y. Katayama, T. Miura, Electrochemistry 73 (2005)
564.
[39] N. Tachikawa, N. Serizawa, Y. Katayama, T. Miura, Electrochim. Acta 53 (2008)
6530.
[40] B. Scharifker, G. Hills, Electrochim. Acta 28 (1983) 879.
[41] N. Tachikawa, Y. Katayama, T. Miura, J. Electrochem. Soc. 154 (2007) F211.
3
(2001) 3351.
[
[
[
[
[
[
[
2] S. Sam, G. Fortas, A. Guittoum, N. Gabouze, S. Djebbar, Sur. Sci. 601 (2007) 4270.
3] J.Y. Park, M.G. Allen, J. Micromech. Microeng. 8 (1998) 307.
4] J.L. McCrea, G. Palumbo, G.D. Hibbard, U. Erb, Rev. Adv. Mater. Sci. 5 (2003) 252.
5] H. Alimadadietal, Mater. Des. 30 (2009) 1356.
6] D.B. Lee, J.H. Ko, S.C. Kwon, Mater. Sci. Eng. A 380 (2004) 73.
7] A.P. Abbott, K.J. McKenzie, Phys. Chem. Chem. Phys. 8 (2006) 4265.
8] Y. Katayama, R. Fukui, T. Miura, J. Electrochem. Soc. 154 (2007) D534.