the cell undergoes apoptosis. For the cells without the uptaken 5,
the same irradiation led to little change in their behaviors and
morphology. This result clearly and qualitatively demonstrates the
phototoxicity of 5.
In conclusion, we have developed a simple, general, and robust
strategy to construct the molecular conjugates of magnetic
nanoparticles and porphyrin derivatives, which already meets
several essential requirements of PDT and HT. This methodology
should lead to a variety of bimodal conjugates like 5 for further
investigations in PDT and HT as well as for other applications in
the emerging field of nanomedicine.
The support by RGC (Hong Kong), DuPont Asia and
European Young Faculty Grant, and HIA (HKUST) is
acknowledged.
Notes and references
Fig. 3 Phase (A, C) and fluorescence (B, D) microscope images of HeLa
cells before and after uptaking 5 intracellularly. Normal HeLa cells
without 5 were observed as the control (A, B). After incubating with 5 for
5 h, HeLa cells, which were cultured on a slide, were washed with PBS
buffer 3 times and then observed with an Olympus BX41 microscope at
61000 magnification (C, D). The fluorescence excitation wavelength
ranges from 545 nm to 580 nm, and the emission wavelength ranges from
610 nm to infrared.
1 Anticancer Agents: Frontiers in Cancer Chemotherapy, ed. I. Ojima,
G. D. Vite and K. H. Altmann, American Chemical Society,
Washington DC, 2001.
2 C. Streffer, P. Vaupel and G. M. Hahn, Biological Basis of Oncologic
Thermotherapy, Springer, Berlin, 1990.
3 A. Jordan, R. Scholz, P. Wust, H. Fahling and R. Felix, J. Magn.
Magn. Mater., 1999, 201, 413.
4 K. S. Sellins and J. J. Cohen, Radiat. Res., 1991, 126, 88; J. J. Fairbairn,
M. W. Khan, K. J. Ward, B. W. Loveridge, D. W. Fairbairn and
K. L. O’Neill, Cancer Lett. (Shannon, Irel.), 1995, 89, 183;
B. V. Harmon, Y. S. Takano, C. M. Winterford and G. C. Gobe,
Int. J. Radiat. Biol., 1991, 59, 489; Y. S. Takano, B. V. Harmon and
J. F. R. Kerr, J. Pathol., 1991, 163, 329.
5 Photodynamic Therapy, ed. D. Kessel, SPIE Optical Engineering Press,
Bellingham, Washinton, 1993.
6 E. D. Sternberg and D. Dolphin, Tetrahedron, 54, 4151; M. R. Detty,
S. L. Gibson and S. J. Wagner, J. Med. Chem., 2004, 47, 3897.
7 D. Kessel, Y. Luo, Y. Q. Deng and C. K. Chang, Photochem.
Photobiol., 1997, 65, 422; R. K. Pandey, G. Zheng, D. A. Lee, T. J.
Dougherty and K. M. Smith, J. Mol. Recognit., 1996, 9, 118; G. Zheng,
W. R. Potter, S. H. Camacho, J. R. Missert, G. S. Wang, D. A. Bellnier,
B. W. Henderson, M. A. J. Rodgers, T. J. Dougherty and R. K. Pandey,
J. Med. Chem., 2001, 44, 1540; N. K. Mak, T. W. Kok, R. N. S. Wong,
S. W. Lam, Y. K. Lau, W. N. Leung, N. H. Cheung, D. P. Huang,
L. L. Yeung and C. K. Chang, J. Biomed. Sci. (Basel), 2003, 10, 418.
8 T. Rajh, L. X. Chen, K. Lukas, T. Liu, M. C. Thurnauer and
D. M. Tiede, J. Phys. Chem. B, 2002, 106, 10543; T. Rajh, Z. Saponjic,
J. Liu, N. M. Dimitrijevic, N. F. Scherer, M. Vega-Arroyo, P. Zapol,
L. A. Curtiss and M. C. Thurnauer, Nano Lett., 2004, 4, 1017;
H. W. Gu, Z. M. Yang, J. H. Gao, C. K. Chang and B. Xu, J. Am.
Chem. Soc., 2005, 127, 34.
9 C. J. Xu, K. M. Xu, H. W. Gu, H. Liu, R. K. Zheng, X. X. Zhang,
Z. H. Guo and B. Xu, J. Am. Chem. Soc., 2004, 126, 9938.
10 S. Sun and H. Zheng, J. Am. Chem. Soc., 2002, 124, 8204.
11 H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White and S. Sun,
Nano Lett., 2005, 5, 379; S. J. Park, S. Kim, S. Lee, Z. G. Khim, K. Char
and T. Hyeon, J. Am. Chem. Soc., 2000, 122, 8581; J. Park, K. J. An,
Y. S. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, N. M.
Hwang and T. Hyeon, Nat. Mater., 2004, 3, 891; T. Hyeon, S. S. Lee,
J. Park, Y. Chung and H. Bin Na, J. Am. Chem. Soc., 2001, 123, 12798;
D. Rabelo, E. C. D. Lima, A. C. Reis, W. C. Nunes, M. A. Novak,
V. K. Garg, A. C. Oliveira and P. C. Morais, Nano Lett., 2001, 1, 105;
D. H. Zhang, Z. Q. Liu, S. Han, C. Li, B. Lei, M. P. Stewart, J. M. Tour
and C. W. Zhou, Nano Lett., 2004, 4, 2151.
Fig. 4 Phase (A, C) and fluorescence (B) microscope images of cells
uptaking 5 intracellularly. The cells were incubated with 5 for 24 h, then
trypsinized, and observed as described in Fig. 3. Within 10 minutes,
apoptosis could be observed surrounding the cells with 5, while the cells
nearby without nanoparticles survive the irradiation.
the nanoparticles of 5 are uptaken by the HeLa cells, likely as the
result of endocytosis when the aggregates of 5 reach a certain size
(y700 nm in this case).14 Though it still remains to verify whether
the porphyrins on the surface of the nanoparticles facilitate the
endocytosis, it is clear that significant amounts of 5 can be uptaken
by the HeLa cells. After being uptaken, the aggregates of 5 locate
exclusively in the cytoplasm (Fig. 3D; the specific distribution also
indicated that the nanoparticles of 5 were not absorbed outside the
cell membrane), which is consistent with the intracellular location
of other soluble porphyrin derivatives that are used as PDT
agents.5
When exposed to yellow light with excitation wavelength
(545–580 nm) for a short period of time (10 minutes), the cell
that contains 5 exhibited a significant change of morphology
(Fig. 4): the round cell changed to an irregular shape and sprouted
out multiple small buds around the surface of the cell, suggesting
12 B. Ward, P. M. Callahan, R. Young, G. T. Babcock and C. K. Chang,
J. Am. Chem. Soc., 1983, 105, 634; B. Ward, C.-B. Wang and
C. K. Chang, J. Am. Chem. Soc., 1981, 103, 5236.
13 O. Q. Munro and H. M. Marques, Inorg. Chem., 1996, 35, 3768.
14 S. Stolnik, L. Illum and S. S. Davis, Adv. Drug Delivery Rev., 1995, 16,
195.
4272 | Chem. Commun., 2005, 4270–4272
This journal is ß The Royal Society of Chemistry 2005