M. Rao et al. / Electrochimica Acta 65 (2012) 228–233
233
elastomeric binder to accommodate the volume changes during
cycling. CNF–S cathodes with CMC + SBR binder are suitable for use
in lithium/sulfur rechargeable cells.
[4] X. Ji, L.F. Nazar, J. Mater. Chem. 20 (2010) 9821.
[5] X. Ji, K.T. Lee, L.F. Nazar, Nat. Mater. 8 (2009) 500.
[6] H. Yamin, A. Gorenshtein, J. Penciner, Y. Sternberg, E. Peled, J. Electrochem. Soc.
135 (1988) 1045.
[7] S.E. Cheon, S.S. Choi, J.S. Han, Y.S. Choi, B.H. Jung, H.S. Lim, J. Electrochem. Soc.
151 (2004) A2067.
[8] D. Marmorstein, T.H. Yu, K.A. Striebel, F.R. McLarnon, J. Hou, E.J. Cairns, J. Power
Sources 89 (2000) 219.
4. Conclusions
A CNF–S composite material with a network structure was
prepared by a chemical deposition method in aqueous solution.
This material was used to prepare electrodes using three different
binders. These electrodes were evaluated in lithium/sulfur cells.
SEM examination of the CNF–S material shows that the sulfur
is dispersed uniformly on the surface of the conductive CNF’s.
The CNFs with good conductivity provide a chain-like electron
transport network and the CNF surface offers reaction sites. The
CNF–S composite material exhibits good electrochemical prop-
erties in rechargeable lithium/sulfur cells, especially when used
with CMC + SBR binder, exhibiting a high specific capacity of up
to 1313 mAh g−1 at the initial discharge and remaining above
586 mAh g−1 even after 60 cycles. In addition, the effects of three
different binders for electrodes prepared with the CNF–S material
on both the potential profiles and capacity were reported and dis-
cussed. These results point out the importance of intimate contact
between the sulfur and the conductive carbon, and the use of an
elastomeric binder to accommodate the volume changes during
cycling.
[9] J. Shim, K.A. Striebel, E.J. Cairns, J. Electrochem. Soc. 149 (2002) A1321.
[10] L.X. Yuan, J.K. Feng, X.P. Ai, Y.L. Cao, S.L. Chen, H.X. Yang, Electrochem. Commun.
8 (2006) 610.
[11] J. Wang, S.Y. Chew, Z.W. Zhao, S. Ashraf, D. Wexler, J. Chen, S.H. Ng, S.L. Chou,
H.K. Liu, Carbon 46 (2008) 229.
[12] C. Wang, J. Chen, Y. Shi, M. Zheng, Q. Dong, Electrochim. Acta 55 (2010) 7010.
[13] C. Liang, N.J. Dudney, J.Y. Howe, Chem. Mater. 21 (2009) 4724.
[14] C. Lai, X.P. Gao, B. Zhang, T.Y. Yan, Z. Zhou, J. Phys. Chem. C 113 (2009)
4712.
[15] J. Chen, X. Jia, Q. She, C. Wang, Q. Zhang, M. Zheng, Q. Dong, Electrochim. Acta
55 (2010) 8062.
[16] W. Zheng, Y.W. Liu, X.G. Hu, C.F. Zhang, Electrochim. Acta 51 (2006) 1330.
[17] L. Yuan, H. Yuan, X. Qiu, L. Chen, W. Zhu, J. Power Sources 189 (2009) 1141.
[18] J. Sun, Y. Huang, W. Wang, Z. Yu, A. Wang, K. Yuan, Electrochim. Acta 53 (2008)
7084.
[19] Z. Chen, L. Christensen, J.R. Dahn, J. Electrochem. Soc. 150 (2003) A1073.
[20] Z. Chen, L. Christensen, J.R. Dahn, Electrochem. Commun. 5 (2003) 919.
[21] L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li, W. Duan, J. Guo, E.J. Cairns, Y. Zhang, J. Am.
[22] L. Ji, M. Rao, S. Aloni, L. Wang, E.J. Cairns, Y. Zhang, Energy Environ. Sci. (2011),
[23] J.H. Shin, E.J. Cairns, J. Power Sources 177 (2008) 537.
[24] J.H. Shin, E.J. Cairns, J. Electrochem. Soc. 155 (2008) A368.
[25] S.I. Tobishima, H. Yamamoto, M. Matsuda, Electrochim. Acta 42 (1997) 1019.
[26] Y.S. Choi, S. Kim, S.S. Choi, J.S. Han, J.D. Kim, S.E. Jeon, B.H. Jung, Electrochim.
Acta 50 (2004) 833.
[27] W. Zheng, X.G. Hu, C.F. Zhang, Electrochem Solid State Lett. 9 (2006) A364.
[28] J.L. Wang, J. Yang, C.R. Wan, K. Du, J.Y. Xie, N.X. Xu, Adv. Funct. Mater. 13 (2003)
487.
[29] D.H. Han, B.S. Kim, S.J. Choi, Y. Jung, J. Kwak, S.M. Park, J. Electrochem. Soc. 151
(2004) E283.
Acknowledgement
M.R. was partially supported by the China Scholarship Council
while visiting the Department of Chemical & Biomolecular Engi-
neering at UC Berkeley.
[30] S.R. Narayanan, D.H. Shen, S. Surampudi, A.I. Atta, G. Halpert, J. Electrochem.
Soc. 140 (1993) 1854.
[31] Y.J. Choi, Y.D. Chung, C.Y. Baek, K.W. Kima, H.J. Ahn, J.H. Ahn, J. Power Sources
184 (2008) 548.
[32] W. Wang, Y. Wang, Y. Huang, C. Huang, Z. Yu, H. Zhang, A. Wang, K. Yuan, J.
Appl. Electrochem. 40 (2010) 321.
[33] B. Zhang, X. Qin, G.R. Li, X.P. Gao, Energy Environ. Sci. 3 (2010) 1531.
[34] X. Sun, C.A. Angell, Electrochem. Commun. 11 (2009) 1418.
References
[1] E.J. Cairns, P. Albertus, Rev. Chem. Biomol. Eng. 1 (2010) 299.
[2] M. Armand, J.M. Tarascon, Nature 451 (2008) 652.
[3] M.S. Whittingham, Chem. Rev. 104 (2004) 4271.