2040
V.L. Siji et al. / Polyhedron 29 (2010) 2035–2040
Table 9
13C NMR (CDCl3) assignments of HL (d in ppm).
Compound
HL
C(4)
C(2)
C(5)
C(7) and C(9)
128.90
C(8)
C(6) and C(10)
119.36
C(3)
C(1)
153.69
147.72
138.25
123.10
25.28
16.52
firmity with these observations. Two singlets at d values 2.03 and
1.90 ppm are attributed to the methyl protons which are chemi-
cally and magnetically equivalent. The resonances for the phenyl
group appear as triplet at 7.02 and 7.33 ppm for para and meta pro-
tons and as doublet at 7.53 ppm for ortho phenyl protons.
In the 1H NMR spectra of the complexes, a signal observed as
singlet at d value 8.45 and 8.48 ppm is assigned to the proton at-
tached to the nitrogen atom N(2). The presence of signal due to
N(2)H in the complexes indicates that there is no enolization of li-
gand in the complexes. Another singlet observed at d value 8.30
and 8.31 ppm is assigned to the N(4) proton. The N(4) phenyl pro-
tons observed within the range 7.04–7.52 ppm in both the com-
plexes. Also two singlets observed at d values 2.04 and 1.91 ppm
are assigned to methyl protons.
Appendix A. Supplementary data
CCDC 750911 and 751638 contain the supplementary crystallo-
graphic data for compounds HL and [Cd(HL)2Cl2]. These data can be
Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-
336-033; or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data
associated with this article can be found, in the online version, at
References
[1] J. Yogeeswari, J.V. Ragavendran, D. Sriram, Y. Nageswari, R. Kavya, N.
Sreevatsan, K. Vanita, J.P. Stables, J. Med. Chem. 50 (2007) 2459.
[2] S.K. Sridhar, S.N. Pandeya, J.P. Stables, A. Ramesh, Eur. J. Med. Chem. 16 (2002)
129.
3.6. 13C NMR spectrum
[3] N.C. Kasuga, K. Onodera, S. Nakano, K. Hayashi, K. Nomiya, J. Inorg. Biochem.
100 (2006) 1176.
[4] Z. Afrasiabi, E. Sinn, W. Lin, Y. Ma, C. Campana, S. Padhye, J. Inorg. Biochem. 99
(2005) 1526.
[5] M. Shalini, P. Yogeeswari, D. Sriram, J.P. Stables, Biomed. Pharmacother. 63
(2009) 187.
[6] J.S. Casas, M.S. Garcia-Tasende, J. Sordo, Coord. Chem. Rev. 209 (2000) 197.
[7] M.L. Post, J. Trotter, J. Chem. Soc., Dalton Trans. (1974) 674.
[8] M.B. Ferrari, G.G. Fava, C. Pelizzic, P. Tarasconi, J. Chem. Soc., Dalton Trans.
(1992) 2153.
[9] H. Sigel, R.B. Martin, Chem. Soc. Rev. 23 (1994) 83.
[10] T.A. Reena, E.B. Seena, M.R.P. Kurup, Polyhedron 27 (2008) 1825.
[11] BRUKER, APEX2, SAINT, XPREP, Bruker AXS Inc., Madison, Wisconsin, USA, 2004.
[12] A. Altornare, G. Cascarano, C. Giacovazzo, A. Guagliardi, J. Appl. Cryst. 26
(1993) 343.
[13] G.M. Sheldrick, Acta Crystallogr., Sect. A 64 (2008) 112.
[14] K. Brandenburg, DIAMOND Version 3.1f, Crystal Impact GbR, Bonn, Germany,
2008.
[15] I.J. Bruno, J.C. Cole, P.R. Edgington, M. Kessler, C.F. Macrae, P.M. Mccabe, J.
Pearson, R. Taylor, Acta Crystallogr., Sect. B 58 (2002) 389.
[16] A.L. Spek, Acta Crystallogr., Sect. D 65 (2009) 148.
[17] V. Suni, M.R.P. Kurup, M. Nethaji, Polyhedron 26 (2007) 5203.
[18] E.B. Seena, M.R.P. Kurup, E. Suresh, J. Chem. Crystallogr. 38 (2008) 93.
[19] E.L. Torres, U. Abram, Inorg. Chem. 47 (2008) 2890.
[20] P.F. Rapheal, E. Manoj, M.R.P. Kurup, Polyhedron 26 (2007) 818.
[21] U.L. Kala, S. Suma, M.R.P. Kurup, S. Krishnan, R.P. John, Polyhedron 26 (2007)
1427.
The 13C NMR spectrum provides direct information about the
carbon skeleton of the molecule is given in Table 9. There are 8 un-
ique carbon atoms in the molecule, which give a total of 8 different
peaks in the 13C NMR spectrum. The C(4) carbon atom resonance is
observed farthest downfield of 153.69 ppm, resultant of the conju-
gative effect of the –N(1)–N(2)–C(O)–N(4)– semicarbazone skele-
ton. The non-protonated carbon atom at C(2) is shifted downfield
in the spectrum (d 147.72 ppm). The methyl carbon atoms are
observed at d 25.28 and 16.52 ppm. The three different types of
aromatic carbons on the substituted phenyl ring are clearly distin-
guishable in the 13C NMR spectrum. The peak corresponding to the
para positioned carbon atom C(8) is observed rather upfield when
compared to its ortho [C(6) and C(10)] and meta [C(7) and C(9)]
counterparts. The N(4) phenyl resonances are: C(6) and C(10),
119.36 ppm; C(7) and C(9), 128.90 ppm; C(8), 123.10 ppm; C(5),
138.25.
Acknowledgements
V.L. Siji thanks the Council of Scientific and Industrial Research,
New Delhi, India for financial support in the form of Junior Re-
search Fellowship. We are thankful to Dr. M.R.P. Kurup, Depart-
ment of Applied Chemistry, Cochin University of Science and
Technology for using the software DIAMOND version 3.1f. We are
grateful to Dr. Babu Varghese, SAIF, IIT Chennai, India for providing
the X-ray diffraction data. The authors are thankful to the SAIF, Co-
chin University of Science and Technology, Kochi, India for elemen-
tal analyses and IR spectral data and NIIST, Thiruvananthapuram,
India for electronic and NMR spectra.
[22] A. Sreekanth, H.-K. Fun, M.R.P. Kurup, Inorg. Chem. Commun. 7 (2004) 324.
[23] V. Philip, V. Suni, M.R.P. Kurup, M. Nethaji, Polyhedron 25 (2006) 1931.
[24] V. Philip, V. Suni, M.R.P. Kurup, M. Nethaji, Polyhedron 24 (2005) 1133.
[25] E. Bermejo, A. Castineiras, L.M. Fostiak, I.G. Santos, J.K. Swearingen, D.X. West,
Polyhedron 23 (2004) 2303.
[26] A. Majumder, G.M. Rosair, A. Mallick, N. Chattopadhyay, S. Mitra, Polyhedron
25 (2006) 1753.
[27] M.R.P. Kurup, S.V. Chandra, K. Muraleedharan, J. Therm. Anal. Calc. 61 (2000)
909.
[28] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination
Compounds, fifth ed., Wiley-Interscience, New York, 1997.
[29] A.D. Naik, V.K. Revankar, Proc. Indian Acad. Sci. (Chem. Sci.) 113 (2001) 285.