Journal of the American Chemical Society
Article
Author Contributions
§C.S.S. and S.L.F. contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the Joint Center for Energy
Storage Research (JCESR), a grant from the Department of
Energy, Energy Innovation Hub, and a grant from the National
Science Foundation, Sustainable Energy Pathways (SEP)
(NSF-1230236). S.L.F. was supported by the National Science
Foundation Graduate Research Fellowship Program (DGE
1256260). We thank Dr. J. M. Kampf for assistance with X-ray
crystallography, as well as funding from the National Science
Foundation (grant CHE-0840456) for X-ray instrumentation.
Figure 7. (a) Charging potential curve for a 2e− reduction of a 100
mM solution of Ni(L6)2. (b) Concentration of the charged Ni(L6)2 as
a function of time. The red triangle represents the concentration of the
neutral solution before cycling.
CONCLUSIONS
■
REFERENCES
In summary, this paper describes the development of a series of
MCCs containing earth-abundant metals and tridentate BPI
ligands as potential anolyte materials for NRFBs. Systematic
modification of the BPI ligand framework and the metal center
enabled the identification of anolytes with high solubilities and
low redox potentials. Studies of the decomposition of these
complexes during bulk-electrolysis cycling revealed that ligand
shedding is a major decomposition pathway. As such, we
observe a strong correlation between MCC stability and the
known rates of ligand substitution at divalent metal centers.
Specifically, BPI complexes of nickel were found to undergo
200 charge and discharge cycles through two reductions with
<5% capacity fade. Ultimately these studies led to the
identification of Ni(L6)2, a complex that possesses the
previously unprecedented combination of high solubility,
multiple electron transfers at low redox potentials, and high
stability in the charged state, even at high concentration.
Overall, the studies described herein have delivered a promising
anolyte candidate for NRFBs and have also provided key
insights into chemical design principles for future classes of
MCC-based anolytes. Our ongoing work is focused on the
design of second-generation complexes that address the
remaining challenges associated with these materials. In
particular, MCC-based anolytes with lower molecular weight
per mole of electron transferred are important future targets.54
Such materials should enable an increase in the effective
concentration of the anolyte, thereby providing the high energy
densities that are required for practical NRFB electrolytes.54
■
(1) Soloveichik, G. L. Chem. Rev. 2015, 115, 11533.
(2) Shin, S.-H.; Yun, S.-H.; Moon, S.-H. RSC Adv. 2013, 3, 9095.
(3) Wang, W.; Luo, Q.; Li, B.; Wei, X.; Li, L.; Yang, Z. Adv. Funct.
Mater. 2013, 23, 970.
(4) Hou, Y.; Vidu, R.; Stroeve, P. Ind. Eng. Chem. Res. 2011, 50, 8954.
(5) Yang, Z.; Zhang, J.; Kintner-Meyer, M. C. W.; Lu, X.; Choi, D.;
Lemmon, J. P.; Liu, J. Chem. Rev. 2011, 111, 3577.
(6) Sun, H.; Park, J. W.; Hwang, S. S.; Lee, D.; Lee, M. J. US Patent
US8481192, 2013.
(7) Ding, C.; Zhang, H.; Li, X.; Liu, T.; Xing, F. J. Phys. Chem. Lett.
2013, 4, 1281.
(8) Winsberg, J.; Janoschka, T.; Morgenstern, S.; Hagemann, T.;
Muench, S.; Hauffman, G.; Gohy, J.-F.; Hager, M. D.; Schubert, U. S.
Adv. Mater. 2016, 28, 2238.
(9) Janoschka, T.; Martin, N.; Martin, U.; Friebe, C.; Morgenstern,
S.; Hiller, H.; Hager, M. D.; Schubert, U. S. Nature 2015, 527, 78.
(10) Janoschka, T.; Hager, M. D.; Schubert, U. S. Adv. Mater. 2012,
24, 6397.
(11) Lin, K.; Chen, Q.; Gerhardt, M. R.; Tong, L.; Kim, S. B.;
Eisenach, L.; Valle, A. W.; Hardee, D.; Gordon, R. G.; Aziz, M. J.;
Marshak, M. P. Science 2015, 349, 1529.
(12) Huskinson, B.; Marshak, M. P.; Suh, C.; Er, S.; Gerhardt, M. R.;
Galvin, C. J.; Chen, X.; Aspuru-Guzik, A.; Gordon, R. G.; Aziz, M. J.
Nature 2014, 505, 195.
(13) Liu, T.; Wei, X.; Nie, Z.; Sprenkle, V.; Wang, W. Adv. Energy
Mater. 2016, 6, 1501449.
(14) Darling, R. M.; Weber, A. Z.; Tucker, M. C.; Perry, M. L. J.
Electrochem. Soc. 2016, 163, A5014.
(15) Darling, R.; Gallagher, K.; Xie, W.; Su, L.; Brushett, F. J.
Electrochem. Soc. 2016, 163, A5029.
(16) Su, L.; Darling, R. M.; Gallagher, K. G.; Xie, W.; Thelen, J. L.;
Badel, A. F.; Barton, J. L.; Cheng, K. J.; Balsara, N. P.; Moore, J. S.;
Brushett, F. R. J. Electrochem. Soc. 2016, 163, A5253.
(17) Nagarjuna, G.; Hui, J.; Cheng, K. J.; Lichtenstein, T.; Shen, M.;
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
́
Moore, J. S.; Rodríguez-Lopez, J. J. Am. Chem. Soc. 2014, 136, 16309.
(18) Zhang, D.; Lan, H.; Li, Y. J. Power Sources 2012, 217, 199.
(19) Liu, Q.; Sleightholme, A. E. S.; Shinkle, A. A.; Li, Y.; Thompson,
L. T. Electrochem. Commun. 2009, 11, 2312.
Crystallographic data of Fe(L4)2 in CIF format (CIF)
Crystallographic data of HL4 in CIF format (CIF)
Crystallographic data of Mn(L4)2 in CIF format (CIF)
Crystallographic data of Ni(L4)2 in CIF format (CIF)
Crystallographic data of Zn(L4)2 in CIF format (CIF)
Experimental procedures and characterization of all new
compounds, including spectroscopic data and potentio-
(20) Sleightholme, A. E. S.; Shinkle, A. A.; Liu, Q.; Li, Y.; Monroe, C.
W.; Thompson, L. T. J. Power Sources 2011, 196, 5742.
(21) Yamamura, T.; Shiokawa, Y.; Yamana, H.; Moriyama, H.
Electrochim. Acta 2002, 48, 43.
(22) Suttil, J. A.; Kucharyson, J. F.; Escalante-Garcia, I. L.; Cabrera, P.
J.; James, B. R.; Savinell, R. F.; Sanford, M. S.; Thompson, L. T. J.
Mater. Chem. A 2015, 3, 7929.
(23) Eisenberg, R.; Gray, H. B. Inorg. Chem. 2011, 50, 9741.
(24) Cappillino, P. J.; Pratt, H. D.; Hudak, N. S.; Tomson, N. C.;
Anderson, T. M.; Anstey, M. R. Adv. Energy Mater. 2014, 4, 1300566.
(25) Xing, X.; Zhang, D.; Li, Y. J. Power Sources 2015, 279, 205.
AUTHOR INFORMATION
Corresponding Authors
■
F
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX