H. Görner, H. Gruen / Chemical Physics 368 (2010) 20–27
27
Scheme 6.
e.g. purging with argon (or nitrogen) since the
U
values are much
[9] I. Loeff, S. Goldstein, A. Treinin, H. Linschitz, J. Phys. Chem. 95 (1991) 4423.
10] K. Gollnik, S. Held, D.O. Mártire, S.E. Braslavsky, J. Photochem. Photobiol. A:
Chem. 69 (1992) 155.
11] I. Gutiérrez, S.G. Bertolotti, M.A. Biasutti, A.T. Soltermann, N.A. García, Can. J.
Chem. 75 (1992) 423.
12] A.E. Alegría, A. Ferrer, G. Santiago, E. Sepúlveda, W. Flores, J. Photochem.
Photobiol. A: Chem. 127 (1999) 57.
13] H. Görner, Photochem. Photobiol. 77 (2003) 171.
14] H. Görner, Photochem. Photobiol. Sci. 5 (2006) 1052.
15] H. Görner, Photochem. Photobiol. 82 (2006) 71.
16] L.R. Comini, S.C.N. Montoya, M. Sarmiento, J. Photochem. Photobiol. A: Chem.
[
[
[
lower when trace amounts of oxygen remain. The obvious reason is
scavenging of the radicals by oxygen which prevents radical termi-
nation. Radical termination (4) takes place in the ms range and the
remaining absorption is considerably reduced (Figs. 7–9). The re-
sults of continuous irradiation are in agreement.
[
[
[
[
4
. Conclusion
188 (2007) 185.
The photochemical reactions of 1-nitroAQs were studied in ace-
[17] S. Steenken, P. Neta, in: Z. Rappoport (Ed.), The Chemistry of Phenols, Wiley,
New York, 2003, p. 1107.
tonitrile in the presence of 2-propanol or other alcohols as H-do-
nors and of triethylamine as electron donor. The triplet state of
N2 is short-lived, but can be intercepted. Secondary radicals lead-
ing to the nitrosoAQ were observed for both N1 and N2 by flash
photolysis. The conversion to the corresponding hydroxylamino
form and eventually to A1/A2 is suggested to occur via nitroAQ
and donor radicals. The photoreduction to aminoAQs is a cas-
cade-like mechanism requiring six electron equivalents. Subse-
quent reduction to 9,10-dihydroxyaminoAQs takes place
efficiently. The photoconversion of various non-quinone nitro-
arenes is blocked at the stage of the hydroxylamino form and
diazaarenes are formed rather than the corresponding amino-
arenes. The full photoreduction of nitroAQs is due to the bi-func-
tional AQ system, where both the nitro group and one of the
carbonyl groups are intermediate H-acceptor sites.
[
18] K.J. Reszka, P. Bilski, C.F. Chignell, J.A. Hartley, N. Khan, R.L. Souhami, A.J.
Mendonca, J.W. Lown, J. Photochem. Photobiol. B: Biol. 15 (1992) 317.
[19] C. Müller, J. Schröder, J. Troe, J. Phys. Chem. B 110 (2006) 19820.
[
20] P. Dahiya, M. Kumbhakar, t. Mukherjee, H. Pal, J. Mol. Struct. 798 (2006)
0.
4
[
21] P. Dahiya, M. Kumbhakar, D.K. Maity, T. Mukherjee, A.B.R. Tripathi, N.
Chattopadhyay, H. Pal, J. Photochem. Photobiol. A: Chem. 181 (2006) 338.
22] R. Frank, G. Greiner, H. Rau, Phys. Chem. Chem. Phys. 1 (1999) 3481.
23] A.V. El’tsov, O.P. Studinskii, Y.K. Levental, M.V. Florinskaya, Zh. Org. Khim. 13
[
[
(
1977) 1061 (Engl. Transl. 13 (1977) 975).
[24] A.V. El’tsov, O.P. Studinskii, Y.K. Levental, Z. Org. Khim. 12 (1976) 1594 (Engl.
Transl. 12 (1976) 1594).
[
25] O.P. Studinskii, Y.K. Levental, A.V. El’tsov, Zh. Org. Khim. 14 (1978) 2150 (Engl.
Transl. 14 (1978) 1991).
[26] S.M. Tsui, W. Chu, Chemosphere 44 (2001) 17.
[
[
27] H. Gruen, H. Görner, Photochem. Photobiol. Sci. 7 (2008) 1344.
28] G.A. Russell, E.J. Geels, F.J. Smentowski, K.-Y. Chang, J. Reynolds, G. Kaupp, J.
Am. Chem. Soc. 89 (1967) 3821.
[29] E. Norambuena, C. Olea-Azar, A.M. Rufs, M.V. Encinas, Phys. Chem. Chem. Phys.
(2004) 1230.
6
[
30] D. Döpp, in: W.M. Horspool, P.-S. Song (Eds.), CRC Handbook of
Photochemistry and Photobiology, CRC Press, Boca Raton, 1995, p. 1019.
31] R. Nakagaki, K. Mutai, Bull. Chem. Soc. Jpn. 69 (1996) 261.
Acknowledgements
[
We thank Professor Wolfgang Lubitz for his support, Mrs. Gabri-
ele Schmitz and Mr. Horst Selbach and Leslie J. Currell for technical
assistance.
[32] S. Fukuzumi, Y. Tokuda, Bull. Chem. Soc. Jpn. 65 (1992) 831.
[
[
33] A. Cors, S.M. Bonesi, R. Erra-Balsells, Tetrahedron Lett. 49 (2008) 1555.
34] Y.G. He, A. Gahlmann, S.J. Feenstra, S.T. Park, A.H. Zewail, Chem. Asian J. 1
(
2006) 56.
[
[
35] C. Yu, B. Liu, L. Hu, J. Org. Chem. 66 (2001) 919.
36] A.C. Bhasikuttan, L.V. Shastri, A.V. Sapre, J. Photochem. Photobiol. A: Chem. 84
References
(
1994) 237.
[
[
37] S. Jockusch, H.-J. Timpe, C.-H. Fischer, W. Schnabel, J. Photochem. Photobiol. A:
Chem. 63 (1992) 217.
38] S. Jockusch, H.-J. Timpe, W. Schnabel, N.J. Turro, J. Photochem. Photobiol. A:
Chem. 96 (1996) 129.
39] A. Demeter, T. Bérces, J. Photochem. Photobiol. A: Chem. 46 (1989) 27.
40] A. Demeter, T. Bérces, J. Phys. Chem. 95 (1991) 1228.
41] C.V. Costa, M.A. Grela, M.S. Churio, J. Photochem. Photobiol. A: Chem. 99
[
[
1] J.M. Bruce, in: S. Patei (Ed.), The Chemistry of the Quinoid Compounds, Wiley,
New York, 1974, p. 465.
2] K. Maruyama, A. Osuka, in: S. Patei, Z. Rappoport (Eds.), The Chemistry of the
Quinoid Compounds, vol. 2, Wiley, New York, 1988, p. 737.
3] D. Schulte-Frohlinde, C. von Sonntag, Z. Phys. Chem. N.F. 44 (1965) 314.
4] A.N. Diaz, J. Photochem. Photobiol. A: Chem. 53 (1990) 141.
5] J.F. McKellar, Rad. Res. Rev. 3 (1971) 141.
6] M. Goez, V. Zubarev, J. Phys. Chem. A 103 (1999) 9605.
7] M. Lukeman, M.S. Xu, P. Wan, Chem. Commun. (2002) 136.
8] K.L. McGilvray, M.N. Chretien, M. Lukeman, J.C. Scaiano, Chem. Commun.
[
[
[
[
[
[
[
[
[
(
1996) 51.
[
[
[
42] H. Görner, Photochem. Photobiol. 82 (2006) 801.
43] P.S. Rao, E. Hayon, Biochim. Biophys. Acta 292 (1973) 516.
44] M.S. Alam, B.S.M. Rao, E. Janata, Rad. Phys. Chem. 67 (2003) 723.
(
2006) 4401.