only recently begun to be explored, and further development
is clearly needed.6
with some unwanted, though not unexpected, result in one
particular case (see later).
To date, the most common approach to build a chiral
carbon bearing a -CF group relies on the asymmetric
3
Recently, we reported on the straightforward formation
of shelf stable, though nevertheless kinetically labile, highly
symmetric, chiral-at-metal complexes 2Ln in combining 3
equiv of 3,3′-bis-diethylaminomethyl-2,2′-dihydroxy-1,1′-
addition of organometallic compounds to prochiral R-trif-
7
luoromethyl-substituted ketones, imines, and the like. The
8
16
nitroaldol (Henry) reaction of simple ketones is difficult
dinaphthalene 1 (“binolam”) with 1 equiv of a lanthanide-
9
17
because of the attenuated reactivity of such compounds, and
(III) triflate, which are armed with an array of acid and
also to the strong tendency toward undergoing a retroni-
troaldol reaction under basic conditions.10 Nevertheless, we
envisioned that our recently reported chiral, monometallic
basic sites (Lewis acid-Br o¨ nsted acid-Lewis base: LA-
BALB) (Figure 1). In particular, the enantiopure lanthanum
derivative [(∆,S,S,S)-Binolam]
3 3
‚La(OTf) 2La was found to
11
lanthanide(III) triflate salt complexes might avoid the latter
difficulty and thus be able to promote a direct catalytic
enantioselective nitroaldol (Henry) reaction12 upon trifluo-
romethyl ketones to the desired enantiomerically enriched
be ideally suited to catalyze the direct nitroaldol (Henry)
reaction between nitromethane and aldehydes in an enanti-
11
oselective manner.
Having found that the nitroaldol reaction catalyzed by 2Ln
did not proceed satisfactorily with simple ketones, we
decided to explore the enantioselective nitroaldol reaction
upon the more reactive trifluoromethyl ketones, using 2La
as catalyst under the conditions previously reported for
common aldehydes. A promising result (79% yield and 52%
ee) was obtained for the commercially available 1,1,1-
trifluoromethyl-2-butanone 3a when working at room tem-
perature. After considerable adjustment of variables, the
optimal working conditions were fixed as indicated.18 Fol-
lowing the recent reports by Soloshonok advising on the
potential self-disproportionation of nonracemic mixtures of
13
R-trifluoromethyl tertiary alcohols. Our expectations were
based not only on the activated nature of trifluoromethyl
ketones as electrophiles but also on the large size of the -CF
3
2
a,4a
(
halfway between an isopropyl and a tert-butyl group),
1
4
3
and the ligating potentialities of the -COCF moiety.
Herein we describe the first apparently general, direct
enantioselective nitroaldol (Henry) reaction of simple trif-
15
luoromethyl ketones and demonstrate that the enantiomeri-
cally enriched R-trifluoromethyl tertiary nitroaldols thereby
obtained are themselves amenable of chemical manipulation
(reduction) into other useful chiral building blocks, however
(
6) Except for hydrocyanation, direct catalytic asymmetric synthesis of
(13) For catalytic enantioselective synthesis of R-trifluoromethyl tertiary
alcohols (or amines), see for the trifluoromethylation reaction: (a) Iseki,
K.; Nagai, T.; Kobayashi, Y. Tetrahedron Lett. 1994, 35, 3137-3138. (b)
Caron, S.; Do, N. M.; Lariv e´ e, A. Synthesis 2003, 1693-1698. Sharpless
dihydroxylation: (c) Bennani, Y. L.; Vanhessche, K. P. M.; Sharpless, B.
Tetrahedron: Asymmetry 1994, 5, 1473-1476. Friedel-Crafts reaction: (d)
Zhaung, W.; Gathergood, N.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem.
2001, 66, 1009-1013. (e) Lyle, M. P. A.; Draper, N. D.; Wilson, P. D.
Org. Lett. 2005, 7, 901-904. (f) T o¨ r o¨ k, B.; Abid, M.; London, G.; Esquibel,
J.; T o¨ r o¨ k, M.; Mhadgut, S. C.; Yan, P.; Prakash, G. K. S. Angew. Chem.,
Int. Ed. 2005, 44, 3086-3089. Ene reaction: (g) Mikami, K.; Aikawa, K.;
Kainuma, S.; Kawakami, Y.; Saito, T.; Sayo, N.; Kumobayashi, H.
Tetrahedron: Asymmetry 2004, 15, 3885-3889. (h) Aikawa, K.; Kainuma,
S.; Hatano, M.; Mikami, K. Tetrahedron Lett. 2004, 45, 183-185. (i)
Mikami, K.; Kakuno, H.; Aikawa, K. Angew. Chem., Int. Ed. 2005, 44,
7257-7260. Aldol reaction: (j) Gathergood, N.; Juhl, K.; Poulsen, T. B.;
Thordrup, K.; Jørgensen, K. A. Org. Biomol. Chem. 2004, 2, 1077-1085.
(k) Wang, X.-J.; Zhao, Y.; Liu, J.-T. Org. Lett. 2007, 9, 1343-1345.
Arylation reaction: (l) Martina, S. L. X.; Jagt, R. B. C.; de Vries, J. G.;
Feringa, B. L.; Minnaard, A. J. Chem. Commun. 2006, 4093-4095.
Alkenylation reaction: (m) Motoki, R.; Tomita, D.; Kanai, M.; Shibasaki,
M. Tetrahedron Lett. 2006, 47, 8083-8086. Alkylynation reaction: (n)
Motoki, R.; Kanai, M.; Shibasaki, M. Org. Lett. 2007, 9, 2997-3000.
Alkylation reaction: (o) Lauzon, C.; Charette, A. B. Org. Lett. 2006, 8,
2743-2745.
tetrasubstituted carbons are restricted to R-keto (or imino) carbonyl
compounds or R-keto phosphonates. Nitroaldol reactions: (a) Christensen,
C.; Juhl, K.; Jørgensen, K. A. Chem. Commun. 2001, 2222-2223. (b)
Christensen, C.; Juhl, K.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem.
002, 67, 4875-4881. (c) Choudary, B. M.; Ranganath, K. V. S.; Pal, U.;
Kantam, M. L.; Sreedhar, B. J. Am. Chem. Soc. 2005, 127, 13167-13171.
d) Li, H.; Wang, B.; Deng, L. J. Am. Chem. Soc. 2006, 128, 732-733. (e)
2
(
Mandal, T.; Samanta, S.; Zhao, C.-G. Org. Lett. 2007, 9, 943-945. Aldol
reactions: (f) Zhuang, W.; Saaby, S.; Jørgensen, K. A. Angew. Chem., Int.
Ed. 2004, 43, 4476-4478. (g) Tokuda, O.; Kano, T.; Gao, W.-G.; Ikemoto,
T.; Maruoka, K. Org. Lett. 2005, 7, 5103-5105. (h) Tang, Z.; Cun, L.-F.;
Cui, X.; Mi, A.-Q.; Jiang, Y.-Z.; Gong, L.-Z. Org. Lett. 2006, 8, 1263-
1
7
2
266. (i) Samanta, S.; Zhao, C.-G.; J. Am. Chem. Soc. 2006, 128, 7442-
443. Alkynylation reaction: (j) Jiang, B.; Chen, Z.; Tang, X. Org. Lett.
002, 4, 3451-3453.
(7) Catalytic asymmetric trifluoromethylation of CdX bonds and dihy-
droxylation of CF3-substituted alkenes are alternative approaches. For
reviews, see: (a) Billard, T.; Langlois, B. R. Eur. J. Org. Chem. 2007,
91-897. (b) Ma, J.-A.; Cahard, D. J. Fluorine Chem. 2007, 128, 975-
96. (c) Herrmann, W. A.; Eder, S. J.; Scherer, W. Angew. Chem., Int. Ed.
8
9
Engl. 1992, 31, 1345-1347.
8) (a) Rosini, G. In ComprehensiVe Organic Synthesis; Trost, B. M.,
Fleming, I., Eds.; Pergamon Press: London, 1991; Vol. 2, pp 321-340.
(
(
b) Luzzio, F. A. Tetrahedron 2001, 57, 915-945. (c) Ono, N. The Nitro
Group in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2001;
Chapter 3, pp 30-68.
(14) Prasad, E.; Flowers, R. A., II. J. Am. Chem. Soc. 2002, 124, 6357-
6361.
(
9) Actually, only a few methodologies are available for accessing
(15) A single enantioselective nitroaldol reaction upon 2,2,2,-trifluoro-
acetophenone (however, with low enantiomeric excess (21% ee)) has been
reported by: Misumi, Y.; Bulman, R. A.; Matsumoto, K. Heterocycles 2002,
56, 599-605. Also, a single case of the enantioselective nitroaldol reaction
upon ethyl R-trifluoromethyl piruvate has been recently shown to occur in
low chemical yield (36%) and enantiomeric excess (13% ee); see: (a) Lu,
S.-F.; Du, D.-M.; Zhang, S.-W.; Xu, J. Tetrahedron: Asymmetry 2004, 15,
3433-3441. (b) Du, D.-M.; Lu, S.-F.; Fang, T.; Xu, J. J. Org. Chem. 2005,
70, 3712-3715.
racemic tertiary nitroaldols. See: (a) Seebach, D.; Lehr, F. Angew. Chem.,
Int. Ed. Engl. 1976, 15, 505-506. (b) Eyer, M.; Seebach, D. J. Am. Chem.
Soc. 1985, 107, 3601-3606. (c) Kinsaga, P. B.; Verkade, J. G. J. Org.
Chem. 1999, 64, 4298-4303.
(10) Taking advantage of this property, Shibasaki, recently reported an
elegant kinetic resolution of tertiary nitroaldols. See: Tosaki, S.-y.; Hara,
K.; Gnanadesikan, V.; Morimoto, H.; Harada, S.; Sugita, M.; Yamagiwa,
N.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2006, 128, 11776-
1
1777.
(16) Bifunctional “Binolam” 1 has been employed in enantioselective
cyanations. See, for example: (a) Baeza, A.; N a´ jera, C.; Sansano, J. M.;
Sa a´ , J. M. Chem. Eur. J. 2005, 11, 3849-3862. (b) Baeza, A.; Casas, J.;
N a´ jera, C.; Sansano, J. M.; Sa a´ , J. M. Angew. Chem., Int. Ed. 2003, 42,
3143-3146. (c) Casas, J.; N a´ jera, C.; Sansano, J. M.; Sa a´ , J. M. Org. Lett.
2002, 4, 2589-2592.
(11) Sa a´ , J. M.; Tur, F.; Gonz a´ lez, J.; Vega, M. Tetrahedron: Asymmetry
2
006, 17, 99-106.
(12) For recent reviews on the catalytic asymmetric nitroaldol (Henry)
reaction, see: (a) Palomo, C.; Oiarbide, M.; Laso, A. Eur. J. Org. Chem.
2
007, 2561-2574. (b) Boruwa, J.; Gogoi, N.; Saikia, P.; Barua, N. C.
Tetrahedron: Asymmetry 2006, 17, 3315-3326. (c) Palomo, C.; Oiarbide,
(17) For a review on chiral lanthanide complexes as enantioselective
catalysts, see: Aspinall, H. C. Chem. ReV. 2002, 102, 1807-1850.
M.; Mielgo, A. Angew. Chem., Int. Ed. 2004, 43, 5442-5444.
5080
Org. Lett., Vol. 9, No. 24, 2007