Communication
ChemComm
3 P. W. Seo, N. A. Khan, Z. Hasan and S. H. Jhung, ACS Appl. Mater.
Interfaces, 2016, 8, 29799–29807.
4 S. Castiglioni, R. Bagnati, R. Fanelli, F. Pomati, D. Calamari and
E. Zuccato, Environ. Sci. Technol., 2006, 40, 357–363.
5 Q. Q. Zhang, G. G. Ying, C. G. Pan, Y. S. Liu and J. L. Zhao, Environ.
Sci. Technol., 2015, 49, 6772–6782.
6 P. Samanta, A. V. Desai, S. Let and S. K. Ghosh, ACS Sustainable
Chem. Eng., 2019, 7, 7456–7478.
7 K. Wu, J. Guo and C. Wang, Chem. Commun., 2014, 50, 695–697.
8 Y. Takashima, V. M. Martinez, S. Furukawa, M. Kondo, S. Shimomura,
H. Uehara, M. Nakahama, K. Sugimoto and S. Kitagawa, Nat. Commun.,
2011, 2, 168.
9 L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne
and J. T. Hupp, Chem. Rev., 2012, 112, 1105–1125.
10 J. Zhang, S. B. Peh, J. Wang, Y. Du, S. Xi, J. Dong, A. Karmakar, Y. Ying,
Y. Wanga and D. Zhao, Chem. Commun., 2019, 55, 4727–4730.
11 Z. Hu, B. J. Deibert and J. Li, Chem. Soc. Rev., 2014, 43, 5815–5840.
12 W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li and
S. K. Ghosh, Chem. Soc. Rev., 2017, 46, 3242–3285.
13 Y. Q. Wang, T. Zhao, X. W. He, W. Y. Li and Y. K. Zhang, Biosens.
Bioelectron., 2014, 51, 40–46.
14 R. Gui, H. Jin, X. Bu, Y. Fu, Z. Wang and Q. Liu, Coord. Chem. Rev.,
2019, 383, 82–103.
15 S. Krause, V. Bon, U. Stoeck, I. Senkovska, D. M. Tobbens, D. Wallacher
and S. Kaskel, Angew. Chem., Int. Ed., 2017, 56, 10676–10680.
16 J. A. Kerr, in CRC Handbook of Chemistry and Physics, ed. D. R. Lide,
CRC Press, Boca Raton, FL, 81st edn, 2000.
17 R. W. Huang, Y. S. Wei, X. Y. Dong, X. H. Wu, C. X. Du, S. Q. Zang
and T. C. W. Mak, Nat. Chem., 2017, 9, 689–697.
18 B. Wang, Q. Yang, C. Guo, Y. Sun, L. H. Xie and J. R. Li, ACS Appl.
Mater. Interfaces, 2017, 9, 10286–10295.
19 K. C. Stylianou, R. Heck, S. Y. Chong, J. Bacsa, J. T. A. Jones,
Y. Z. Khimyak, D. Bradshaw and M. J. Rosseinsky, J. Am. Chem.
Soc., 2010, 132, 4119–4130.
20 X. Zhou, J. Liu, C. Wang, P. Sun, X. Hu, X. Li, K. Shimanoe,
N. Yamazoe and G. Lu, Sens. Actuators, B, 2015, 206, 577–583.
21 S. Pramanik, C. Zheng, X. Zhang, T. J. Emge and J. Li, J. Am. Chem.
Soc., 2011, 133, 4153–4155.
22 S. L. Hou, J. Dong, M. H. Tang, X. L. Jiang, Z. H. Jiao and B. Zhao,
Anal. Chem., 2019, 91, 5455–5460.
23 J. S. Murray and P. Politzer, Wiley Interdiscip. Rev.: Comput. Mol. Sci.,
2011, 1, 153–163.
24 T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580–592.
25 A. Mallick, A. M. El-Zohry, O. Shekhah, J. Yin, J. Jia, H. Aggarwal,
A. H. Emwas, O. F. Mohammed and M. Eddaoudi, J. Am. Chem. Soc.,
2019, 141, 7245–7249.
26 A. M. El-Zohry, A. Alturki, J. Yin, A. Mallick, O. Shekhah,
M. Eddaoudi, B. S. Ooi and O. F. Mohammed, J. Phys. Chem. C,
2019, 123, 5900–5906.
de-excitation channels of the excited state, resulting in an increased
intensity of the HE band and decreased intensity of the LE band.
The excellent stability, sensitivity and selectivity prompted
us to evaluate the use of Hf-PBTA to quantitatively determine
a trace amount of aromatic sulfonic compounds, such as
sulfamethazine (SMA), in a water system. This antibiotic is
widely used in the treatment of bacterial infections for creatures;
however, contamination from antibiotic residues in drinking
water or even animals could lead to severe diseases,29,30 and
consequently it needs to be detected in a sensitive way. Therefore,
the emissive intensity ratio (I480/I388) of Hf-PBTA was significantly
enhanced upon exposure to SMA containing water (Fig. S30, ESI†).
The LOD of Hf-PBTA was calculated to be 0.668 ppm (Table S2,
ESI†) based on the linear relationship between the response signal
and concentration, where the p–p aromatic conjugation effect was
mainly responsible among the three synergistic aspects due to the
nearly neutral pH and another substituted aromatic part of SMA.
In summary, a highly sensitive and ratiometric sensing plat-
form towards sulfite and sulfonic derivatives has been constructed
based on robust Hf-PBTA. Notably, the Hf-MOF-based sensor
material displays opposite response towards aromatic sulfonic
derivatives and sulfite anions. By combining the pyridine proto-
nation effect, p–p stacking interaction and twist motion induced
by hydrogen binding interaction, helpful insight on the observed
fluorescence changes has been obtained. The robust Hf-PBTA also
exhibits sensitive detection of antibiotics in aqueous solution.
This work serves as a good example of a self-calibrating fluores-
cent ratiometric sensor for possible applications in monitoring
hazardous chemical species in aqueous solutions.
Kai Xing, Ruiqing Fan, Wei Chen, Shuang Gai and Yulin Yang
thank the National Natural Science Foundation of China (Grant
No. 21873025 and 21571042) for their support. Kai Xing gratefully
acknowledges the financial support of the China Scholarship
Council (CSC, 201806120319) to support his study at Rutgers
University. The RU team acknowledges the partial support from
the National Science Foundation (Grant No. DMR-1507210).
27 J. H. Carter, X. Han, F. Y. Moreau, I. da Silva, A. Nevin,
H. G. W. Godfrey, C. C. Tang, S. Yang and M. Schroder, J. Am. Chem.
Soc., 2018, 140, 15564–15567.
28 Y. Sun, C. Zhong, R. Gong, H. Mu and E. Fu, J. Org. Chem., 2009, 74,
7943–7946.
Conflicts of interest
The authors declare no competing financial interests.
29 A. U. Rajapaksha, M. Vithanage, M. Ahmad, D. C. Seo, J. S. Cho,
S. E. Lee, S. S. Lee and Y. S. Ok, J. Hazard. Mater., 2015, 290,
43–50.
30 B. Wang, X. L. Lv, D. Feng, L. H. Xie, J. Zhang, M. Li, Y. Xie, J. R. Li
and H. C. Zhou, J. Am. Chem. Soc., 2016, 138, 6204–6216.
Notes and references
1 P. M. Chapman, Environ. Int., 2007, 33, 492–501.
2 P. L. Wang, L. H. Xie, E. A. Joseph, J. R. Li, X. O. Su and H. C. Zhou,
Chem. Rev., 2019, 119, 10638–10690.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2019