2358
J.-Y. Winum et al. / Bioorg. Med. Chem. Lett. 15 (2005) 2353–2358
1
silica gel chromatography to yield compound 3 as a yellow
Compound 4f: mp:149–151 ꢁC; H NMR (DMSO-d
400 MHz) 9.4 (d, 1H, J = 3.1 Hz), 9.2 (d, 1H,
J = 3.1 Hz), 8.1 (t, 1H, J = 6.3 Hz), 8–7.5 (m, 9H), 4.3
6
,
1
oil. Compound 3b: H NMR (DMSO-d
6
, 250 MHz) d 8.8
d
(
s, 1H), 3.5 (t, 2H, J = 5.1 Hz), 1.3 (s, 9H), 1.1–1.2 (m,
1
3
1
2H), 0.8 (s, 9H), 0.7 (t, 3H, J = 3.3 Hz), 0.1 (s, 6H); MS
(d, 2H, J = 6.3 Hz); CNMR (DMSO- d
140.4, 139.5, 138.3, 129.4, 128.6, 127.8, 127.1, 127.0, 126.9,
45.9; MS ESI m/z 301 (M+Na) .
6
, 400 MHz) d
+
+
ꢀ
ꢀ
ESI m/z 461 (M+Na) . ESI m/z 437 (MꢀH) . Com-
1
pound 3c: H NMR (DMSO-d
+
+
6
, 250 MHz) d 8.7 (s, 1H),
.6 (t, 2H, J = 2.5 Hz), 1.4 (s, 9H), 1.1–1.3 (m, 16H), 0.8 (s,
3
9
20. Khalifah, R. G. J. Biol. Chem. 1971, 246, 2561–2573. An
SX.18MV-R Applied Photophysics (Oxford, UK)
stopped-flow instrument has been used for measuring the
initial velocities by following the change in absorbance of
a pH indicator. Phenol red (at a concentration of 0.2 mM)
has been used as indicator, working at the absorbance
maximum of 557 nm, with 10 mM Hepes (pH 7.5) as
buffer, 0.1 M Na SO (for maintaining constant the ionic
+
H), 0.7 (t, 3H, J = 3.3 Hz), 0.1 (s, 6H); MS ESI m/z 489
+
ꢀ
ꢀ
1
(
M+Na) . ESI m/z 465 (MꢀH) . Compound 3d:
H
NMR (DMSO-d , 250 MHz) d 9.6 (s, 1H), 3.5 (t, 2H,
6
J = 2.6 Hz), 1.4 (s, 9H), 1.2 (m, 20H), 0.8 (s, 9H), 0.7 (t,
3
+
+
H, J = 7.4 Hz), 0.1 (s, 6H); MS ESI m/z 517 (M+Na) .
ꢀ
ꢀ
1
ESI m/z 493 (MꢀH) . Compound 3e: H NMR (DMSO-
d , 250 MHz) d 9.9 (s, 1H), 7.4 (m, 5H), 4.75 (s, 2H), 1.4 (s,
6
2
4
+
+
H), 0.9 (s, 9H), 0.15 (s, 6H); MS ESI m/z 439 (M+Na) .
9
strength), following the CA-catalyzed CO
reaction for a period of 10–100 s. Saturated CO
in water at 20 ꢁCwere used as substrate. The CO
concentrations ranged from 1.7 to 17 mM for the deter-
mination of the kinetic constants. For each inhibitor at
least six traces of the initial 5–10% of the reaction have
been used for determining the initial velocity. The uncata-
lyzed rates were determined in the same manner and
subtracted from the total obseverd rates. The kinetic
2
hydration
ꢀ
ꢀ
1
ESI m/z 415 (MꢀH) . Compound 3f: H NMR (DMSO-
2
solutions
d
6
, 250 MHz) d 9.7 (s, 1H), 7.1–7.8 (m, 9H), 4.9 (s, 2H), 1.6
2
+
s, 9H), 0.9 (s, 9H), 0.5 (s, 6H); MS ESI m/z 515
(
(
+
ꢀ
ꢀ
M+Na) . ESI m/z 491(MꢀH) .
General procedure for the synthesis of compounds 4:
Compound 3 was dissolved and stirred at 0 ꢁCin a
mixture of TFA–H O 5%. The reaction was monitored by
2
TLCuntil the complete disappearance of starting material.
The mixture was then diluted with ethyl acetate, washed
with a saturated aqueous solution of NaHCO , and then
constants kcat and kcat/K
m
were obtained by nonlinear
least-squares methods using SigmaPlot. Stock solutions of
inhibitors were prepared at a concentration of 1–3 mM (in
DMSO–water 1:1, v/v) and dilutions up to 0.01 nM done
with the assay buffer mentioned above. K
inhibitors were determined by using Lineweaver–Burk
3
washed several times with water. The organic layer was
dried over anhydrous sodium sulfate and concentrated in
vacuo. The residue was purified by silica gel chromato-
graphy to give compound 4 in moderate to good yield. For
the synthesis of compound 4a, the same procedure was
I
s of the
4
–7
plots, as reported earlier.
21. Innocenti, A.; Vullo, D.; Scozzafava, A.; Supuran, C. T.
Bioorg. Med. Chem. Lett. 2005, 15, 567–571.
22. Winum, J.-Y.; Vullo, D.; Casini, A.; Montero, J.-L.;
Scozzafava, A.; Supuran, C. T. J. Med. Chem. 2003, 46,
2197–2204.
23. Casini, A.; Antel, J.; Abbate, F.; Scozzafava, A.; David,
S.; Waldeck, H.; Sch a¨ fer, S.; Supuran, C. T. Bioorg. Med.
Chem. Lett. 2003, 13, 841–845.
24. Abbate, F.; Casini, A.; Owa, T.; Scozzafava, A.; Supuran,
C . T.Bioorg. Med. Chem. Lett. 2004, 14, 217–223.
25. Abbate, F.; Winum, J.-Y.; Potter, B. V. L.; Casini, A.;
Montero, J.-L.; Scozzafava, A.; Supuran, C. T. Bioorg.
Med. Chem. Lett. 2004, 14, 231–234.
26. Weber, A.; Casini, A.; Heine, A.; Kuhn, D.; Supuran, C.
T.; Scozzafava, A.; Klebe, G. J. Med. Chem. 2004, 47,
550–557.
27. Abbate, F.; Casini, A.; Scozzafava, A.; Supuran, C. T. J.
Enzyme Inhib. Med. Chem. 2003, 18, 303–308.
28. Casini, A.; Abbate, F.; Scozzafava, A.; Supuran, C. T.
Bioorg. Med. Chem. Lett 2003, 13, 2763–2769.
29. Abbate, F.; Coetzee, A.; Casini, A.; Ciattini, S.; Scozzaf-
ava, A.; Supuran, C. T. Bioorg. Med. Chem. Lett. 2004, 14,
337–341.
used starting from compound 2. Compound 4a: mp: 75–
1
8
1
4
0 ꢁC; H NMR (DMSO-d , 400 MHz) d 9 (s, 1H), 8.4 (s,
6
ꢀ
ꢀ
H), 6.7 (s, 2H); MS ESI m/z 110 (MꢀH) . Compound
1
6
b: mp: 75–77 ꢁC; H NMR (DMSO-d , 400 MHz) d 8.8
(
J = 6.6 Hz), 1.4 (s, 2H), 1.2–1.3 (m, 10H), 0.9 (t, 3H,
s, 1H), 7.2 (t, 1H, J = 5.7 Hz), 2.85 (q, 2H J = 13.3 Hz,
1
J = 6.4 Hz); CNMR (DMSO- d
3
6
, 400 MHz) d 43.2, 32.1,
+
0.0, 29.5, 26.4, 27.1, 22.9, 14.8; MS ESI m/z 247
3
(
(
+
1
M+Na) . Compound 4c: mp: 89–92 ꢁC; H NMR
DMSO-d , 400 MHz) d 9.1 (d, 1H, J = 3.3 Hz), 8.75 (d,
6
1
2
3
3
H, J = 3.3 Hz), 7.3 (t, 1H, J = 5.8 Hz), 2.9 (q,
H,J = 13.2 Hz, J = 6.4 Hz), 1.1–1.5 (m, 16H), 0.9 (t,
1
H, J = 6.6 Hz); CNMR (DMSO- d
3
6
, 400 MHz) 42.8+,
1.8, 29.6, 29.5, 29.4, 29.2, 29.1, 26.7, 22.6, 14.4; MS ESI
+
1
m/z 275 (M+Na) . Compound 4d: mp: 95–97 ꢁC;
NMR (DMSO-d , 400 MHz) 9.1 (d, 1H, J = 3.2 Hz), 8.75
d, 1H, J = 3.3 Hz), 7.35 (t, 1H, J = 5.8 Hz), 2.9 (q, 2H,
J = 13.4 Hz, J = 6.9 Hz), 1.1–1.5 (m, 20H), 0.8 (t, 3H,
H
6
(
1
3
J = 6.3 Hz); CNMR (DMSO- d
29.6, 29.5, 29.4, 29.2, 29.1, 26.6, 26.2, 25.9, 22.6, 14.4; MS
6
, 400 MHz) d 42.8, 31.8,
+
+
1
ESI m/z 275 (M+Na) . Compound 4e: mp: 88–93 ꢁC; H
NMR (DMSO-d , 400 MHz) d 9.1 (s, 1H), 8.9 (s, 1H), 7.8
t, 1H, J = 6.3 Hz), 7.1–7.4 (m, 5H), 4 (d, 2H, J = 6.3 Hz);
6
(
1
3
CNMR (DMSO- d
6
, 400 MHz) d 139.1, 129.3, 129.1,
30. Abbate, F.; Casini, A.; Scozzafava, A.; Supuran, C. T.
Bioorg. Med. Chem. Lett. 2004, 14, 2357–2361.
+
28.6, 127.9, 127.4, 46.3; MS ESI m/z 225 (M+Na) .
+
1