Vol. 26, No. 20 (2014)
Synthesis of Bromo-Substituted Salamo-Type Bisoxime Compounds Series 6917
TABLE-3
THE UV-VISIBLE SPECTRA AND 1H NMR DATA FOR THE SALAMO-TYPE BISOXIME COMPOUNDS H2L1-H2L4
π- π* (nm)
1H NMR (400 MHz, DMSO-d6, δ/ppm)
Compound
2.14 (t, J = 6.0 Hz, 2H, CH2), 4.31 (t, J = 6.0 Hz, 4H, CH2-O), 6.85 (d, J = 8.0 Hz, 2H, PhH), 7.25 (s, 2H, PhH),
7.33 (d, J = 8.0 Hz, 2H, PhH), 8.09 (s, 2H, N=CH), 9.80 (s, 2H, OH)
H2L1
270, 324
2.04 (t, J = 4.0 Hz, 4H, CH2), 4.23 (t, J = 4.0 Hz, 4H, CH2-O), 6.85 (d, J = 4.0 Hz, 2H, PhH), 7.24 (s, 2H, PhH),
7.34 (d, J = 4.0 Hz, 2H, PhH), 8.08 (s, 2H, N=CH), 9.89 (s, 2H, OH)
H2L2
H2L3
H2L4
269, 323
277, 315
276,322
2.34 (s, 2H, CH2), 2.37 (d, J = 8.7 Hz, 4H, CH2), 4.46 (s, 4H, CH2-O), 7.40 (d, J = 2.0 Hz, 2H, PhH), 7.55 (d, J =
2.0 Hz, 2H, PhH), 7.72 (d, J = 2.2 Hz, 2H), 8.25 (s, 2H, N=CH), 10.14 (s, 2H, OH)
2.33 (s, 4H, CH2), 2.36 (d, J = 8.0 Hz, 4H, CH2), 4.45 (s, 4H, CH2-O), 7.41 (d, J = 2.0 Hz, 2H, PhH), 7.55 (d, J =
2.0 Hz, 2H, PhH), 7.71 (d, J = 2.2 Hz, 2H), 8.25 (s, 2H, N=CH), 10.05 (s, 2H, OH)
and T. Nabeshima, J. Org. Chem., 70, 1704 (2005); (c) W.K. Dong,
C.Y. Zhao, Y.X. Sun, X.L. Tang and X.N. He, Inorg. Chem. Commun.,
12, 234 (2009); (d) W.K. Dong, L. Wang, Y.X. Sun, J.F. Tong and J.C.
Wu, Chinese J. Inorg. Chem., 27, 372 (2011); (e) W.K. Dong and Y.J.
Ding, Cryst. Res. Technol., 43, 321 (2008); (f) W.K. Dong, Y.X. Sun,
S.J. Xing, Y. Wang and X.H. Gao, Z. Naturforsch., 67, 197 (2012); (g)
W.K. Dong, S.J. Xing, Y.X. Sun, L. Zhao, L.Q. Chai and X.H. Gao, J.
Coord. Chem., 65, 1212 (2012); (h) W.K. Dong, Y.X. Sun, G.H. Liu,
L. Li, X.Y. Dong and X.H. Gao, Z. Anorg. Allg. Chem., 638, 1370
(2012); (i) W.K. Dong, Y.X. Sun, X.N. He, J.F. Tong and J.C. Wu,
Spectrochim. Acta A, 76, 476 (2010).
REFERENCES
1. T.K. Saha, V. Ramkumar and D. Chakraborty, Inorg. Chem., 50, 2720
(2011).
2. R.M. Haak, A. Decortes, E.C. Escudero-Adán, M.M. Belmonte, E. Mar-
tin, J. Benet-Buchholz and A.W. Kleij, Inorg. Chem., 50, 7934 (2011).
3. C. Meermann, K.W. Törnroos and R. Anwander, Inorg. Chem., 48,
2561 (2009).
4. P.A. Vigato and S. Tamburini, Coord. Chem. Rev., 252, 1871 (2008).
5. Y. Sui, D.P. Li, C.H. Li, X.H. Zhou, T. Wu and X.Z. You, Inorg. Chem.,
49, 1286 (2010).
6. S. Akine, S. Hotate and T. Nabeshima, J. Am. Chem. Soc., 133, 13868
(2011).
11. W.K. Dong,Y.X. Sun,Y.P. Zhang, L. Li, X.N. He and X.L. Tang, Inorg.
Chim. Acta, 362, 117 (2009).
7. S. Akine, W.K. Dong and T. Nabeshima, Inorg. Chem., 45, 4677 (2006).
8. S. Akine, T. Tadokoro and T. Nabeshima, Inorg. Chem., 51, 11478
(2012).
12. J.A. Faniran, K.S. Patel and J.C. Bailar Jr., J. Inorg. Nucl. Chem., 36,
1547 (1974).
13. T. Ghosh, B. Mondal, T. Ghosh, M. Sutradhar, G. Mukherjee and M.
Drew, Inorg. Chim. Acta, 360, 1753 (2007).
14. H.E. Smith, Chem. Rev., 83, 359 (1983).
9. W.K. Dong, X.N. He, H.B.Yan, Z.W. Lv, X. Chen, C.Y. Zhao and X.L.
Tang, Polyhedron, 28, 1419 (2009).
10. (a) W.K. Dong,Y.X. Sun, C.Y. Zhao, X.Y. Dong and L. Xu, Polyhedron,
29, 2087 (2010); (b) S. Akine, T. Taniguchi, W. Dong, S. Masubuchi
15. S. Akine, T. Taniguchi and T. Nabeshima, Chem. Lett., 30, 682 (2001).