J. S. Cruz-Sa´nchez, E. Juaristi / Tetrahedron Letters 43 (2002) 9369–9372
9371
Figure 1. Calculated (DFT, B3LYP/6-311+G**//B3LYP/6-31G*) relative energies of the chair trans-5 (Erel=0.0 kcal/mol), chair
cis-5 (Erel=7.11 kcal/mol), and 2,5-twist cis-5 (Erel=4.07 kcal/mol).
(DFT, B3LYP/6-311+G**//B3LYP/6-31G*) estimation
of the relative energies of the chair conformations for
trans-5 (relative E=0.0 kcal/mol) and cis-5 (relative
E=7.11 kcal/mol) (Fig. 1). By comparison, the 2,5-
twist-boat conformation of cis-5 is calculated to be
nearly 3.0 kcal/mol lower in energy than the chair form
(Fig. 1).15
References
1. (a) Eliel, E. L.; Allinger, N. L.; Angyal, S. J.; Morrison,
G. A. Conformational Analysis; Interscience: New York,
1965; (b) Juaristi, E. Introduction to Stereochemistry and
Conformational Analysis; Wiley: New York, 1991; (c)
Eliel, E. L.; Wilen, S. H.; Mander, L. N. Stereochemistry
of Organic Compounds; Wiley: New York, 1994; (d)
Conformational Behavior of Six-Membered Rings: Analy-
sis, Dynamics, and Stereoelectronic Effects, Juaristi, E.,
Ed.; VCH Publishers: New York, 1995.
Chemical equilibration of cis-5 and trans-5 was carried
out in the presence of BF3·OEt2, in chloroform solution
and at 50°C. Equilibrium was reached from both sides
and gave DG°323 K=−1.50 0.04 kcal/mol in favor of
trans-5 (Eq. (7)).
2. Eliel, E. L.; Kandasamy, D. J. Org. Chem. 1976, 41,
3899.
3. (a) Eliel, E. L. Acc. Chem. Res. 1970, 3, 1; (b) Juaristi, E.
Acc. Chem. Res. 1989, 22, 357; (c) Juaristi, E.; Antu´nez,
S. Tetrahedron 1992, 48, 5941; (d) Juaristi, E.; D´ıaz, F.;
Cue´llar, G.; Jime´nez-Va´zquez, H. A. J. Org. Chem. 1997,
62, 4029; (e) Ram´ırez-Quiro´s, Y.; Balderas, M.;
Escalante, J.; Quintana, D.; Gallardo, I.; Madrigal, D.;
Molins, E.; Juaristi, E. J. Org. Chem. 1999, 64, 8668.
4. (a) Eliel, E. L.; Evans, S. A. J. Am. Chem. Soc. 1972, 94,
8587; (b) Kaloustian, M. K.; Dennis, N.; Mager, S.;
Evans, S. A.; Eliel, E. L. J. Am. Chem. Soc. 1976, 98, 956.
5. (a) Zefirov, N. S.; Gurvich, L. G.; Shashkov, A. S.;
Krimer, M. Z.; Vorob’eva, E. A. Tetrahedron 1976, 32,
1211; (b) Eliel, E. L.; Juaristi, E. J. Am. Chem. Soc. 1978,
100, 6114; (c) Juaristi, E. J. Chem. Educ. 1979, 56, 438.
6. (a) Juaristi, E.; Mart´ınez, R.; Me´ndez, R.; Toscano, R.
A.; Soriano-Garc´ıa, M.; Eliel, E. L.; Petsom, A.; Glass,
R. S. J. Org. Chem. 1987, 52, 3806. See also: (b) Juaristi,
E.; Gordillo, B.; Mart´ınez, R.; Toscano, R. A. J. Org.
Chem. 1989, 54, 5963; (c) Juaristi, E.; Gordillo, B.;
Sabahi, M.; Glass, R. S. J. Org. Chem. 1990, 55, 33; (d)
Gordillo, B.; Juaristi, E.; Mart´ınez, R.; Toscano, R. A.;
White, P. S.; Eliel, E. L. J. Am. Chem. Soc. 1992, 114,
2157.
(7)
It is then apparent that the attractive electrostatic inter-
action that stabilizes the axial form of 5-methylsul-
fonyl-1,3-dioxane (Od−···d+SO2CH3; see entry 2 in Table
1) is not reproduced in the 1,3-dithiane analog; that is,
Sd−···d+SO2CH3 electrostatic attraction is not apprecia-
ble in cis-5. As a consequence, the heterocyclic struc-
ture adopts a twist-boat conformation that minimizes
the steric and electrostatic repulsions that an axial
methylsulfonyl group generates, and that benefits from
the increased entropy content of the flexible conformers
in 1,3-dithiane derivatives.16
Acknowledgements
We are indebted to CONACYT, Me´xico, for financial
support via grant 33023-E. We are also grateful to
Marcos Herna´ndez-Rodr´ıguez for the modelling studies
that are presented in Fig. 1, and to Mar´ıa Luisa Kaiser-
Carril, for technical assistance.
7. For discussions on eclipsing in organic compounds, see:
(a) Juaristi, E. Stable Eclipsed Conformations, In
Schleyer, P. v. R.; Allinger, N. L.; Clark, T.; Gasteiger,