Paper
Dalton Transactions
3
1
1
3
1
Synthesis of complex 2b
P{ H}-NMR (CDCl
3
, T = 298 K, ppm) δ: 8.9.
1
C{ H}-NMR (CDCl , T = 298 K, ppm) δ: 32.9 (C, Pd–C–I),
3
Complex 3a was obtained following similar conditions to
complex 2a but the synthesis was carried out at a low tempera-
ture (273 K) and the complex was collected within 10 min.
A pale-yellow microcrystalline solid was obtained with a
3
5
(
1
3.6 (CH
2.1 (CH
3
, quinoline–CH
3
), 43.8 (d, C, JCP = 61.8 Hz, C–PPh
3
),
3
, OCH ), 52.2 (CH
3
3
3
, OCH ), 52.3 (CH , OCH ), 52.4
3
3
3
10
CH , OCH ), 124.7 (CH, C ), 127.9 (d, C, J = 7.0 Hz, C ),
3 3 CP
31.3 (d, C, JCP = 66.8 Hz, C ), 132.4 (CH, C ), 134.2 (CH, C ),
135.5 (C, CvC), 139.2 (CH, C ), 140.8 (d, CH, JCP = 11.0 Hz,
C ), 148.9 (d, C, J = 3.0 Hz, C ), 161.4 (d, C, J = 10.5 Hz,
8
6
5
6
1% yield.
4
1
H-NMR (300 MHz, CDCl , T = 298 K, ppm) δ: 3.32 (s, 3H,
3
7
9
CP
CP
quinoline–CH
3
3 3
), 3.45 (s, 3H, OCH ), 3.60 (s, 3H, OCH ), 3.87
2
3
CvC), 164.4 (CH, C ), 165.0 (C, CvO), 166.2 (C, CvO), 169.5
(
7
1
3 3 2
s, 3H, OCH ), 3.88 (s, 3H, OCH ), 7.34–7.62 (m, 9H, PPh , H ),
5
6
7
(d, C, JCP = 7.2 Hz, CvO), 171.6 (C, CvO).
.76–8.04 (m, 5H, H , H , H , PPh ), 8.14 (dd, 1H, J = 8.5,
2
IR (KBr pellets): νCvO 1718 cm−
1
.
4
.6 Hz, H ).
3
1
1
30 2 8 2 2
Anal. calcd for C34H I NO PPd·CH Cl : C 39.78, H 3.05,
P{ H}-NMR (CDCl , T = 298 K, ppm) δ: 34.3.
3
−
1
N 1.33. Found: C 39.651, H 2.97, N 1.19.
IR (KBr pellets): νCvO 1732, 1716 and 1704 cm
.
Anal. calcd for C33 NO PPd: C 41.38, H 2.95, N 1.46.
H
28
I
2
8
Found: C 41.21, H 2.97, N 1.32.
Notes and references
Synthesis of complex 4b
1
(a) J. Tsuji, in Palladium Reagents and Catalysts: Innovations
in Organic Synthesis, Wiley and Sons, New York, 1995, ch. 4;
Complex 4b was obtained by reacting complex 1b and Br2
under the same experimental conditions described above in
the case of complex 2a. The reaction mixture was stirred for
(
(
(
b) L. S. Hegedus, Coord. Chem. Rev., 1996, 147, 443–545;
c) L. S. Hegedus, Coord. Chem. Rev., 1997, 161, 129–255;
d) I. P. Beletskaya and A. V. Cheprakov, Chem. Rev., 2000,
2
8 h and the reaction product precipitated by addition of
diethyl ether.
100, 3009–3066; (e) C. Amatore and A. Jutand, Acc. Chem.
A yellow microcrystalline solid was obtained with a 78%
Res., 2000, 33, 314–321; (f) R. Zimmer, C. U. Dinesh,
E. Nandanan and F. A. Khan, Chem. Rev., 2000, 100, 3067–
yield.
1
3
H-NMR (300 MHz, CDCl , T = 298 K, ppm) δ: 3.31 (s, 3H,
3125; (g) J. A. Marshall, Chem. Rev., 2000, 100, 3163–3186;
OCH ), 3.42 (s, 3H, OCH ), 3.54 (s, 3H, quinoline–CH ), 3.64
3
3
3
(
h) E.-I. Negishi, in Handbook of Organopalladium Chemistry
3
(
s, 3H, OCH ), 3.71 (s, 3H, OCH ), 7.39–7.62 (m, 9H, PPh , H ,
3 3 2
for Organic Synthesis, ed. E.-I. Negishi and A. de Meijere,
Wiley-Interscience, New York, 2002, ch. I.1, I.2;
7
6
5
2 2
H ), 7.67–7.81 (m, 3H, H , PPh ), 7.95–8.08 (m, 2H, H , PPh ),
4
8
.28 (dd, 1H, J = 8.5, 1.9 Hz, H ).
(
i) K. Tamao, T. Hiyama and E.-I. Niegishi, in 30 Years of
3
1
1
P{ H}-NMR (CDCl , T = 298 K, ppm) δ: 10.7.
3
the Cross-coupling Reaction, Special issue, J. Organomet.
Chem., 2002, 653, 1–303. ( j) L. A. Agrofoglio, I. Gillaizeau
and Y. Saito, Chem. Rev., 2003, 103, 1875–1916;
1
3
1
C{ H}-NMR (CDCl
3
, T = 298 K, ppm) δ: 30.8 (CH
3
, quino-
= 59.9 Hz,
line–CH ), 31.2 (C, Pd–C–Br), 41.7 (d, C, J
3
CP
C–PPh ), 51.9 (CH , OCH ), 52.0 (CH , OCH ), 52.1 (CH ,
3
3
3
3
3
3
(
k) E. Negishi and L. Anastasia, Chem. Rev., 2003, 103,
3
OCH
3
), 52.4 (CH
3
3
, OCH ), 124.9 (CH, C ), 127.4 (d, C, JCP =
1979–2017; (l) G. Zeni and R. C. Larock, Chem. Rev., 2004,
1
0
8
6
7
.0 Hz, C ), 130.5 (d, C, J = 65.9 Hz, C ), 132.4 (CH, C ),
CP
104, 2285–2309; (m) K. C. Nicolaou, P. G. Bulger and
5
4
1
33.9 (CH, C ), 137.7 (C, CvC), 138.6 (CH, C ), 140.4 (d, CH,
D. Sarlah, Angew. Chem., Int. Ed., 2005, 44, 4442–4489;
7
9
JCP = 11.4 Hz, C ), 148.3 (d, C, JCP = 3.0 Hz, C ), 157.9 (d, C,
(
(
n) E.-I. Negishi, Bull. Chem. Soc. Jpn., 2007, 80, 233–257;
o) C. J. Elsevier and M. R. Eberhard, in Comprehensive
2
JCP = 11.5 Hz, CvC), 157.9 (C, CvO), 164.4 (CH, C ), 166.5
C, CvO), 170.3 (d, C, JCP = 7.9 Hz, CvO), 171.4 (C, CvO).
(
Organometallic Chemistry III From Fundamentals to Appli-
cations, ed. A. Canty, ed. in Chief, R. H. C. D. Michael and
P. Mingos, Elsevier, Amsterdam, Boston, 2007, vol. 8, ch.
−
1
IR (KBr pellets): νCvO 1722 cm
.
Anal. calcd for C H Br NO PPd·CH Cl : C 43.66, H 3.35,
3
4
30
2
8
2
2
N 1.45. Found: C 43.51, H 3.23, N 1.32.
8.05, pp. 270–298; (p) M. García-Melchor, X. Solans-
Monfort and G. Ujaque, in CC Bond Formation Comprehen-
sive Inorganic Chemistry II (Second Edition): From Elements to
Applications, 9, ed. J. Reedijk and K. R. Poeppelmeier, Else-
vier, Amsterdam, 2013, pp. 767–805.
2 (a) M. W. Van Laren and C. J. Elsevier, Angew. Chem., Int.
Ed., 1999, 38, 3715–3717; (b) K. Muñiz, Angew. Chem., Int.
Ed., 2009, 48, 2–14; (c) L.-M. Xu, B.-J. Li, Z. Yang and
Z.-J. Shi, Chem. Soc. Rev., 2010, 39, 712–733; (d) Y. Dang,
S. Qu, J. W. Nelson, H. D. Pham, Z.-X. Wang and X. Wang,
J. Am. Chem. Soc., 2015, 137, 2006–2014.
Synthesis of complex 5b
2
Complex 5b was obtained by reacting complex 1b and I under
the same experimental conditions as described above. The
reaction mixture was stirred for 10 min and the reaction
product precipitated by addition of diethyl ether.
A pale-yellow microcrystalline solid was obtained in 93%
yield.
1
3
H-NMR (300 MHz, CDCl , T = 298 K, ppm) δ: 3.24 (s, 3H,
OCH ), 3.43 (s, 3H, OCH ), 3.61 (s, 3H, quinoline–CH ), 3.63
3
3
3
(
s, 3H, OCH
3
), 3.74 (s, 3H, OCH
3
), 7.39–7.80 (m, 12H, PPh
2
,
3 (a) R. Van Belzen, R. A. Klein, H. Kooijman, N. Veldman,
A. L. Spek and C. J. Elsevier, Organometallics, 1998, 17,
1812–1825; (b) R. Van Belzen, C. J. Elsevier, A. Dedieu,
3
7
6
H , H , H , PPh
7
2
), 7.98–8.05 (m, 2H, PPh
2
), 8.15 (dt, 1H, J =
5
4
.1, 2.3 Hz, H ), 8.34 (dd, 1H, J = 8.5, 1.9 Hz, H ).
Dalton Trans.
This journal is © The Royal Society of Chemistry 2015